"सुपरल्यूमिनल: प्रकाश से भी तेज मस्तिष्क तरंगों की खोज" शीर्षक वाला यह लेख मस्तिष्क के भीतर क्षणभंगुर तरंगों द्वारा सुगम बनाए गए सुपरल्यूमिनल मस्तिष्क तरंगों की उभरती अवधारणा की जांच करता है। यह ऐतिहासिक शोध पर आधारित है, जिसमें प्रो. डॉ. गुंटर निमट्ज़ द्वारा किए गए मूलभूत प्रयोग शामिल हैं, जिन्होंने क्वांटम टनलिंग के माध्यम से प्रकाश से भी तेज संचार की व्यवहार्यता को प्रदर्शित किया, और विटाली एल. गैलिंस्की और लॉरेंस आर. फ्रैंक द्वारा प्रस्तावित WETCOW (कमजोर-क्षणभंगुर कॉर्टिकल तरंगें) जैसे समकालीन सिद्धांतों पर चर्चा की। क्वांटम यांत्रिकी के सिद्धांतों को तंत्रिका विज्ञान संबंधी समझ से जोड़कर, लेख संज्ञानात्मक प्रसंस्करण, चेतना और अंतरतारकीय संचार की संभावना के लिए सुपरल्यूमिनल मस्तिष्क गतिविधि के संभावित निहितार्थों की खोज करता है। इसके अतिरिक्त, यह इन क्रांतिकारी अवधारणाओं से उत्पन्न होने वाले नैतिक विचारों और वैज्ञानिक प्रभावों की जांच करता है। एक आकर्षक कथा के माध्यम से, यह कार्य तंत्रिका विज्ञान के चौराहों के आसपास संवाद को बढ़ावा देने का लक्ष्य रखता है, क्वांटम भौतिकी, तथा मनुष्यों और संभावित रूप से बाह्य अंतरिक्ष प्राणियों दोनों में बुद्धि और चेतना की प्रकृति के लिए उनकी प्रासंगिकता।
31 मई, 2016: यदि कोई वस्तु प्रकाश की गति के निकट पहुंचती है तो उसकी मापी गई लंबाई घट जाती है (अपेक्षाकृत)।
यह सब कब शुरू हुआ? यह बताना बहुत मुश्किल है। कल्पना कीजिए कि आप एक अपेक्षाकृत सरल जीवन जी रहे हैं, जहाँ चीजें एक-एक करके होती हैं, बिना किसी स्पष्ट संबंध या उद्देश्य के, और फिर… अचानक, सब कुछ ठीक हो जाता है; आपको एक बोध होता है।
25 अगस्त, 2023 को धूप के मौसम में, मैं हमेशा की तरह क्रेते के सौडा खाड़ी के सामने सनसेट हाउस के ब्रेकफास्ट बार में बैठा था। मैंने अपने लैपटॉप पर एक दिलचस्प हेडलाइन देखी थी। यह गैलिंस्की और फ्रैंक के एक शुष्क वैज्ञानिक पेपर से थी, जिसमें "मस्तिष्क में क्षणभंगुर तरंगों के संभावित समकालिक प्रभावों" के बारे में बताया गया था।
उन्होंने अपने सिद्धांत को "वेटकाउ" नाम दिया, जिसका मतलब है "कमजोर रूप से लुप्तप्राय कॉर्टिकल तरंगें।" ज़्यादातर लोग इस तरह की हेडलाइन के बारे में दो बार नहीं सोचेंगे, ज़्यादा से ज़्यादा एक भीगी हुई गाय की छवि पर हँसेंगे। कम से कम, मैंने तो यही किया।
लेकिन फिर मैंने बिंदुओं को जोड़ा। WETCOW पेपर का विषय, क्षणभंगुर तरंगें, का मतलब था सुपरल्यूमिनल मस्तिष्क तरंगें। और यह एक गेम-चेंजर होगा:
जब मेरी मुलाक़ात क्षणभंगुर लहरों से हुई, पहली बार
मुझे कल की तरह याद है 1999 में प्रसिद्ध भौतिक विज्ञानी के साथ दिन प्रो. डॉ. गुंटर निमट्ज़कोलोन विश्वविद्यालय में अपनी प्रयोगशाला में। यह गुरुवार, 9 सितंबर का दिन था।
निमट्ज़ प्रकाश से भी तेज़ संचार के अपने विवादास्पद प्रयोगों के लिए प्रसिद्ध हैं। मैंने उनके बारे में एक पत्रिका के लेख से सुना था।
मैंने निमट्ज़ को फ़ोन किया और प्रदर्शन के लिए समय तय किया। निमट्ज़ ने सहमति जताते हुए मेरे लिए प्रयोग दोहराया और मैंने इसे 35 मिमी फ़िल्म पर रिकॉर्ड किया।
प्रयोग में माइक्रोवेव को क्वांटम सुरंग की ओर निर्देशित किया जाता है, जो प्रयोग में मैंने देखा था; इससे सूचना ले जाने वाली प्रकाश से भी तेज रेडियो तरंगें बनती हैं। ये तरंगें सुपरल्यूमिनल क्वांटम प्रभावों से उत्पन्न होती हैं।
और यह प्रदर्शन तब से मेरे साथ रहा है। यह "नो-कम्युनिकेशन प्रमेय" पर काबू पाने के लिए समाधान खोजने की मेरी कोशिश का आधार था। यह एक सिद्धांत है जो बताता है कि मैक्रोस्कोपिक दुनिया में, क्वांटम उलझाव का उपयोग कभी भी प्रकाश से तेज़ संचार के लिए नहीं किया जा सकता है।
जब मेरी मुलाक़ात क्षणभंगुर लहरों से हुई, दूसरी बार
WETCOW के पेपर को पढ़ने के बाद, मुझे यह बात समझ में आई: क्षणभंगुर तरंगों की उपस्थिति का अर्थ है कि सुपरल्यूमिनल मस्तिष्क तरंगें भी हैं। अधिकांश न्यूरोलॉजिस्ट, जो मस्तिष्क तरंगों के विशेषज्ञ हैं, संभवतः इस संबंध को नजरअंदाज कर देते हैं, क्योंकि यह उनकी विशेषज्ञता के क्षेत्र से बाहर है।
और कोई भी भौतिक विज्ञानी उछलकर चिल्लाएगा नहीं, “मैंने प्रकाश से भी तेज़ मस्तिष्क तरंगों की खोज कर ली है!” क्योंकि यह भी उनकी विशेषज्ञता के क्षेत्र से बाहर है।
क्षणभंगुर तरंगें सुपरल्यूमिनल क्वांटम प्रभावों का परिणाम हैं, जिनकी मैं लगभग 25 वर्षों से खोज कर रहा हूं। एक अलग संदर्भ में उस प्रदर्शन में भाग लेने के बाद: उन्नत अलौकिक सभ्यताओं के साथ सुपरल्यूमिनल संचार का।
मस्तिष्क में सुपरलुमिनल तरंगें लेकिन अब (या तब), अगस्त 2023 में, मुझे यह एहसास हुआ कि रेडियो तरंगों के साथ अंतरतारकीय दूरियों को पाटने के बजाय, जो कि हमारी वर्तमान क्षमता से परे है, ये तरंगें मस्तिष्क में न्यूरॉन्स के बीच सूक्ष्म दूरी को आसानी से पाटती हैं, हर दिन, हर संवेदनशील प्राणी में, हर जगह। और सिर्फ़ अंतरिक्ष में ही नहीं पृथ्वीयदि हम यह मान लें कि हम ब्रह्मांड में एकमात्र बुद्धिमान प्रजाति नहीं हैं।
सोच दूरियों को पाट सकती है प्रकाश से भी तेज़ मस्तिष्क तरंगें न केवल मानव मस्तिष्क की अत्यधिक प्रसंस्करण गति की व्याख्या करती हैं। इन तरंगों की क्वांटम टनलिंग विशेषता, जिसे पहले केवल "शोर" के रूप में वर्णित किया गया था, उन्हें लगभग जादुई शून्य-/एक-आयामी स्थान से जोड़ती है, जो न तो समय और न ही दूरी को जानता है, अतीत, भविष्य या स्थानों के बीच कोई अलगाव नहीं है।
जब भी कोई कण या तरंग किसी अवरोध से टकराती है, तो शून्य-समय क्वांटम टनलिंग द्वारा क्षणभंगुर तरंगें बनती हैं। क्या यह अल्बर्ट आइंस्टीन की "दूरी पर डरावनी कार्रवाई" का स्रोत है, जो उलझे हुए कणों पर क्षणभंगुर तरंगों से हस्तक्षेप है जो तुरंत लाखों प्रकाश-वर्ष की दूरी को पाट देते हैं?
समाधान की सरलता आश्चर्यजनक है; इसे छोटे बच्चों को भी समझाया जा सकता है, लेकिन इसके परिणामों की जटिलता और व्यापकता इसकी सरलता से कम नहीं है।
अपनी कुर्सी से समय यात्रा? क्या यह संभव है कि आप अपनी कुर्सी पर बैठे-बैठे ही समय में पीछे और भविष्य में यात्रा कर सकें और सिर्फ़ इसके बारे में सोचकर इतिहास को बदल सकें? दैनिक जीवन के वृहद जगत में अभी तक यह असंभव है, लेकिन आपके मस्तिष्क में असीम रूप से छोटे, क्वांटम क्षेत्र में एक हद तक यह किया जा सकता है।
बाह्यग्रहीय जीवन से सम्पर्क? इसके अलावा, अगर उलझाव मौजूद है और मस्तिष्क तरंगें क्वांटम सुरंग के माध्यम से ब्रह्मांडीय चेतना के एकीकृत आयाम से जानकारी लाती हैं, तो क्या हम अलौकिक बुद्धिमत्ता से संपर्क कर सकते हैं? क्या इस जांच का नतीजा कार्ल सागन के उपन्यास "कॉन्टैक्ट" जैसा होगा, जहां एलेनोर एरोवे की यात्रा के बाद संदेहियों के लिए कोई ठोस सबूत नहीं पेश किया जा सका?
"कहीं न कहीं, कुछ अतुलनीय पहचाने जाने का इंतज़ार कर रहा है।" - कार्ल सैगन।
ब्रह्मांड के आश्चर्य को दर्शाने वाली एक ऐसी घटना है क्वांटम टनलिंग। कल्पना करें: एक फोटॉन किरण को विभाजित करें। एक आधा प्रकाश की गति से दौड़ता है—नियमों का पालन करना. दूसरा? यह दीवार से टकराता है। लेकिन क्वांटम क्षेत्र में, दीवारें…नहीं हैंअहंकारी. कण “पार नहीं जाते” - वे धोखा देते हैं! वे गायब यहाँ और को पुन: प्रकट वहाँ, ब्रह्मांडीय टेलीपोर्टर्स की तरह। निमट्ज़ उन विद्रोही फोटॉनों को मापता है और - धमाका! - वे अपने कानून का पालन करने वाले भाई-बहनों से आगे निकल जाते हैं। यह क्वांटम टनलिंग की आश्चर्यजनक वास्तविकता है।
🔬 क्या सूचना प्रकाश से भी अधिक तेजी से यात्रा कर सकती है? भौतिक विज्ञानी गुंटर निमट्ज़ दावा है कि उसने असंभव काम कर दिखाया है - माइक्रोवेव सिग्नल भेजकर प्रकाश की गति से 4.7 गुना का उपयोग क्वांटम टनलिंग! इस विवादास्पद प्रयोग में, उन्होंने एक सिग्नल को विभाजित किया, एक अवरोध के माध्यम से सुरंग का हिस्सा बनाया, और यहां तक कि मोजार्ट की 40वीं सिम्फनी को भी समय में पीछे की ओर प्रसारित किया?
मुझे एक डॉक्यूमेंट्री मिली वापसी का रास्ता; गुंटर निमट्ज़ अपने दावों को स्पष्ट करते हुए उन्होंने कहा:
कैसे करता है क्वांटम टनलिंग क्या यह आइंस्टीन की प्रकाश-गति सीमा का उल्लंघन कर सकेगा?
रेमंड चाउ जैसे भौतिक विज्ञानी यह तर्क क्यों देते हैं? नहीं है क्या यह सच है कि सूचना का हस्तांतरण सही है?
क्या यह प्रयोग समय और कार्य-कारण के नियमों को पुनः लिख सकता है?
निमट्ज़ ने एक अंतरराष्ट्रीय बहस छेड़ दी: क्या यह एक अभूतपूर्व खोज है या क्वांटम यादृच्छिकता की गलत व्याख्या? दिमाग को झकझोर देने वाले इस प्रयोग में गोता लगाएँ जो विज्ञान कथा और वास्तविकता के बीच की रेखा को धुंधला कर देता है - और खुद तय करें कि क्या यह सच है? पहरयात्रा संदेश यह कभी भी संभव हो सकता है.
💬 नीचे टिप्पणी करेंक्या आपको लगता है कि प्रकाश से भी तेज संचार संभव है, या फिर आइंस्टीन अभी भी सही हैं?
(स्पॉइलर अलर्ट: आइंस्टीन सही हैं। लेकिन शून्य या एक-आयामी वस्तुओं (0D-1D) के अंतरिक्ष में नहीं। आइंस्टीन ने प्रकृति के बारे में महत्वपूर्ण अंतर्दृष्टि प्रदान की अंतरिक्ष समय और गुरुत्वाकर्षण, लेकिन उन्होंने सीधे तौर पर के व्यवहार का वर्णन नहीं किया क्वांटम यांत्रिकी गैर-रिमानियन स्थानों में.
1994 में, प्रोफेसर डॉ. गुंटर निमट्ज़ और उनके सहयोगी होर्स्ट ऐचमैन ने हेवलेट-पैकार्ड में अभूतपूर्व प्रयोग किए, जिसमें प्रकाश की तुलना में तेज़ गति से सूचना प्रसारित करना शामिल था। उन्होंने क्वांटम टनलिंग नामक एक घटना की बदौलत प्रकाश की तुलना में 4.7 गुना अधिक गति से बहुत कम दूरी पर सफलतापूर्वक एक संकेत पहुँचाया। इस उल्लेखनीय परिणाम ने वैज्ञानिकों के बीच गरमागरम चर्चाओं को जन्म दिया है, फिर भी यह पुनरुत्पादनीय बना हुआ है।
प्रकाश की तुलना में तेज़?
यह सुनने में भले ही अविश्वसनीय लगे, लेकिन मैं 1999 में उस समय मौजूद था जब प्रोफेसर डॉ. निमट्ज़ ने मोजार्ट की 40वीं सिम्फनी के एएम-मॉड्यूलेटेड माइक्रोवेव सिग्नल को बोस डबल प्रिज्म के माध्यम से प्रकाश की गति से 4.7 गुना अधिक गति से प्रेषित किया था।
निमट्ज़ का क्वांटम टनलिंग प्रयोग, 1999
जैसा कि एक विज्ञान-कथा थीम वाली समाचार वेबसाइट के वेबमास्टर ने कहा,भविष्य का संग्रहालय"मैं लगातार दिलचस्प विषयों की तलाश में रहता था। एक दिन, मैं डॉ. निमट्ज़ और सुपरल्यूमिनल क्वांटम टनलिंग की रहस्यमय प्रक्रियाओं के बारे में एक लेख पर अचानक से आ गया। उत्सुकतावश, मैंने उनसे संपर्क किया और वे विनम्रतापूर्वक अपना प्रयोग प्रदर्शित करने के लिए सहमत हो गए।
"पहली बार प्रो. डॉ. निमट्ज़ से मिलने के बाद मुझे उनका नया टनलिंग प्रयोग दिखाया गया। एक आम व्यक्ति के रूप में मैं उनके प्रयोग की गहन वैज्ञानिक व्याख्या करने में तुरंत सक्षम नहीं हूँ, लेकिन मैं आज जो कुछ भी देखा, उसे समझने की पूरी कोशिश करूँगा, और अपनी अंतर्दृष्टि और प्रश्नों को साझा करने का प्रयास करूँगा और जैसे ही डेटा ज्ञात होगा, उसे उपलब्ध कराऊँगा।"
"मैं यहां पहली बार प्रोफेसर निमट्ज़ के नए प्रयोग सेटअप की विश्व-विशिष्ट तस्वीरें प्रस्तुत कर रहा हूं।"
इस प्रयोग में, क्वांटम-टनल सिग्नल को साधारण प्रयोगशाला अंतरिक्ष से गुज़रने वाले सिग्नल के विरुद्ध मापा गया। इसे प्रदर्शित करने के लिए, डॉ. निमट्ज़ ने टनलिंग समय को सटीक रूप से मापने के लिए एक ऑसिलोस्कोप और एक डिटेक्टर डायोड का इस्तेमाल किया।
मोजार्ट की गति प्रकाश की गति से 4.7 गुना अधिक
भविष्य में संभावित प्रश्नों की प्रत्याशा में, मैंने छह वर्ष पहले एक लघु वीडियो तैयार किया था, जिसमें सुपरलुमिनल मोजार्ट ट्रांसमिशन की अंतिम बची हुई रिकॉर्डिंग भी शामिल है।
तकनीकी प्रश्न
अगस्त 2023 में, मैंने क्वांटम टनलिंग प्रयोग के पीछे के इंजीनियर और प्रोफेसर निमट्ज़ के साथ विभिन्न संबंधित शोधपत्रों के सह-लेखक होर्स्ट एचमैन के साथ पत्राचार किया। मैंने सिग्नल टाइमिंग के मॉड्यूलेशन और डिटेक्शन के बारे में पूछताछ की। उन्होंने निम्नलिखित जानकारी प्रदान की:
"हमारे समय माप के दौरान, मैंने विशेष फ़िल्टरिंग से सुसज्जित एक पल्स मॉड्यूलेटर बनाया, जिससे 13 मेगाहर्ट्ज की पुनरावृत्ति दर और लगभग 500 पिकोसेकंड का उदय समय संभव हुआ। एएम सिग्नल एक आसानी से पता लगाने योग्य और मापने योग्य ट्रेस प्रदान करता है, जो एक तेज़ डिटेक्टर डायोड के साथ पर्याप्त रूप से तेज़ ऑसिलोस्कोप के कारण संभव है।"
यदि हम वास्तव में क्वांटम टनलिंग से उत्पन्न होने वाले सुपरल्यूमिनल प्रभावों के अस्तित्व को स्वीकार करते हैं, तो हम यह निष्कर्ष निकाल सकते हैं कि यह घटना एक कण को बहुत ही कम समय के लिए एक सख्त स्थानीयकृत टैकीऑनिक अवस्था में प्रवेश करने की अनुमति देती है।
सुपरल्यूमिनल टनलिंग को दुनिया भर की प्रयोगशालाओं में सैकड़ों बार सफलतापूर्वक किया गया है, जो रोज़मर्रा की तकनीक में इसकी प्रयोज्यता को दर्शाता है। उदाहरण के लिए, आपके स्मार्टफ़ोन पर फ़िंगरप्रिंट रीडर क्वांटम टनलिंग का उपयोग करता है। आप इसके बारे में शायद न सोचें, लेकिन यह बस काम करता है!
जब क्वांटम टनलिंग लाल लेजर पॉइंटर (कई सौ टेराहर्ट्ज़ की आवृत्ति पर संचालित) के साथ होती है, तो उच्च आवृत्ति के कारण क्षणभंगुर टैकीऑनिक क्षेत्र केवल कुछ पिकोमीटर तक ही फैलता है।
निमट्ज़ के प्रयोगों के दौरान, उन्होंने 8.7 गीगाहर्ट्ज की आवृत्ति का उपयोग किया, जो संयोग से हीलियम-3 उत्सर्जन की तरंगदैर्घ्य से मेल खाती थी। इस विशेष आवृत्ति ने उनके क्षणभंगुर क्षेत्र को प्रिज्मों के बीच कई सेंटीमीटर तक पता लगाने योग्य बनाया। (यह संयोग ही हुआ कि विश्वविद्यालय प्रयोगशाला में उपलब्ध माइक्रोवेव उत्सर्जक इसी आवृत्ति पर संचालित होता था।)
दिलचस्प बात यह है कि ऐसा प्रतीत होता है कि जितनी कम आवृत्ति का प्रयोग किया जाता है, क्षणभंगुर क्षेत्र अवरोध से उतना ही अधिक विस्तृत होता है।
हाल ही में, इस अभूतपूर्व प्रयोग को दोहराया गया पीटर एल्सेन और साइमन टेबेक, जिन्होंने अपने निष्कर्ष प्रस्तुत किए "जुगेंड फोर्श्टउनके काम ने उन्हें राइनलैंड-पफल्ज़ से प्रथम पुरस्कार के साथ-साथ जर्मनी के लिए हेरियस पुरस्कार भी दिलाया।
बाएँ: जर्मनी की पूर्व चांसलर, एंजेला मर्केल, दाएँ: "जुगेंड फ़ोर्स्च" विजेता पीटर एलसेन (17)
ब्रेन क्या है? (टोपोलॉजी और स्ट्रिंग सिद्धांत संक्षेप में)
इस नियम के अनुसार कोई भी चीज़ प्रकाश से तेज़ नहीं चल सकती, लेकिन इसका एक अपवाद है जिसे कम लोग जानते हैं: क्षणभंगुर तरंगें। इस घटना के लिए कई तरह के स्पष्टीकरण दिए गए हैं।
मेरा स्पष्टीकरण सरल है: एक फोटॉन टोपोलॉजी, ज्यामिति, आयाम, सूचना, ऊर्जा या किसी भी चीज़ की सबसे छोटी संभव इकाई है। टोपोलॉजिकल रूप से, एक फोटॉन अंतरिक्ष में एक शून्य-आयामी बिंदु है; यह शून्य (0) आयाम का एक क्वांटम है।
क्वांटम टनलिंग की मंत्रमुग्ध कर देने वाली बैले में, यह फोटॉन, यह शुद्ध क्षमता, एक अवरोध को पार करती है। ऐसा करते हुए, यह रूपांतरित हो जाता है; जैसे ही एक बिंदु एक स्थान से दूसरे स्थान पर संक्रमण करता है, यह एक रेखा बन जाता है - एक स्ट्रिंग। यह वही स्ट्रिंग है, वह नाजुक तंतु, जो स्ट्रिंग सिद्धांत की भव्य कथा में अपना स्थान पाता है। अचानक, हम शून्य-आयामी के अलौकिक क्षेत्र से एक-आयामी वस्तु की मूर्त वास्तविकता में पहुँच गए हैं।
सैद्धांतिक भौतिकी के शब्दकोष में, हम इस एक-आयामी स्ट्रिंग को "ब्रेन" के रूप में भी संदर्भित कर सकते हैं, जो समय के ताने-बाने से रहित एक सीमित, एक-आयामी अंतरिक्ष में मौजूद है।
ब्रेन क्या है?
स्ट्रिंग और क्वांटम सिद्धांत के क्षेत्र में, 1-ब्रेन एक-आयामी "ऑब्जेक्ट या तरंगें" हैं जो अंतरिक्ष-समय को पार करती हैं - शास्त्रीय कानूनों के माध्यम से नहीं, बल्कि सिद्धांतों द्वारा शासित होती हैं क्वांटम भौतिकीजब हम एक-आयामी अंतरिक्ष पर विचार करते हैं, तो हम चौथे आयाम को छोड़ देते हैं, जो समय है।
इस संदर्भ में, फोटॉन या स्ट्रिंग्स सुपरल्यूमिनली गति कर सकते हैं। यह केवल एक अमूर्त गणितीय विचार नहीं है; यह हमारी वास्तविकता को दर्शाता है।
क्षणभंगुर तरंगें फोटॉनों के चार-आयामी गैर-क्वांटम क्षेत्र में पुनः प्रवेश करने से उत्पन्न होती हैं, जिससे हमें अवरोध को पार करते हुए फोटॉन की प्रकाश से भी तेज गति को देखने का अवसर मिलता है।
यह अंतरिक्ष है, जिम, लेकिन जैसा हम जानते हैं वैसा नहीं
अल्बर्ट आइंस्टीन ने गणितज्ञ हरमन मिन्कोवस्की द्वारा बताए गए ज्यामिति का उपयोग करते हुए अपने विशेष सापेक्षता के सिद्धांत की व्याख्या की, जिन्होंने अंतरिक्ष और समय को एक चार-आयामी स्पेसटाइम सातत्य में एकीकृत किया।
अपने सामान्य सापेक्षता के सिद्धांत के लिए, आइंस्टीन ने रीमानियन ज्यामिति का उपयोग किया - एक शाखा जिसमें वक्र स्थान की अवधारणा शामिल है - यह वर्णन करने के लिए कि द्रव्यमान और ऊर्जा किस प्रकार स्पेसटाइम को विकृत करते हैं।
इस "टोपोलॉजी", घुमावदार अंतरिक्ष मॉडल, ने शुरुआती समय से ही हमारे लिए एक अंतहीन आकर्षण रखा है।
रीमान क्षेत्र पर ध्यान करता हुआ एक मानव
एक गोला 3 और 4 आयामों में मौजूद होता है। शून्य और एक आयामी क्षेत्रों में, गोला (और समय) मौजूद नहीं होता है, क्योंकि इन आयामों में "सतह" या "आयतन" को परिभाषित करने के लिए आवश्यक संरचना का अभाव होता है, "समय" की तो बात ही छोड़िए।
क्या ब्रह्माण्ड की हमारी समझ में रीमान क्षेत्र से आगे बढ़ने का “समय” आ गया है?
मानव मस्तिष्क की अत्यधिक प्रसंस्करण गति को आंशिक या पूर्णतः सुपरल्यूमिनल सिग्नल संचरण द्वारा समझाया जा सकता है।
वेटकाउ
परिचय
क्या आपने कभी मानव मस्तिष्क की आश्चर्यजनक प्रसंस्करण गति के बारे में सोचा है? एक दिलचस्प संभावना यह है कि इस अविश्वसनीय क्षमता का श्रेय आंशिक रूप से सुपरल्यूमिनल सिग्नल ट्रांसमिशन को दिया जा सकता है।
अपने शोध में गैलिंस्की और फ्रैंक ने इस बात पर प्रकाश डाला है कि लुप्त होती लहरें मस्तिष्क में होने वाली ये क्रियाएं - जिन्हें पहले महज "शोर" माना जाता था - वास्तव में मानव सीखने और याददाश्त के लिए महत्वपूर्ण हैं। सबसे खास बात यह है कि ये क्षणभंगुर तरंगें प्रकाश से भी अधिक तेजी से यात्रा कर सकती हैंयह एक दिलचस्प अनुमान है: क्षणभंगुर तरंग → प्रकाश से भी तेज़यह कथन चेतना की प्रकृति के बारे में आवश्यक प्रश्न उठाता है: यह क्या है? इसकी उत्पत्ति कहाँ से होती है? यह हमारे भौतिक शरीर से कैसे जुड़ती है?
क्या यह सच है?
2000 के दशक की शुरुआत में, वैज्ञानिक समुदाय अटकलों से गुलजार था। कुछ क्वांटम भौतिक विज्ञानी इस धारणा के बारे में अनिश्चित थे या इसके विरोध में थे कि क्वांटम सुरंगित लुप्तप्राय तरंगें प्रकाश से भी तेज गति से चलते हैं।
उनकी अनिच्छा आइंस्टीन के सापेक्षता के सिद्धांत के स्पष्ट उल्लंघन से उपजी है: कोई भी चीज़ प्रकाश से अधिक तेज गति से नहीं चल सकती।
हालाँकि, यह बिलकुल सच नहीं है। नियम कहता है कि द्रव्यमान वाली कोई भी चीज़ निर्वात में प्रकाश से ज़्यादा तेज़ नहीं चल सकती।
"यह भी कहा जाता है कि क्वांटम टनलिंग कणों को प्रकाश से भी अधिक गति से अवरोधों से गुजरने की अनुमति दे सकती है। लेकिन यह विशेष सापेक्षता का उल्लंघन नहीं करता है क्योंकि कोई भी जानकारी प्रसारित नहीं की जा सकती है। यह घटना क्वांटम यांत्रिकी में तरंग-जैसे व्यवहार का परिणाम है और इसमें प्रकाश से अधिक तेज़ गति से सूचना या पदार्थ को ले जाना शामिल नहीं है।"
इसे यहीं पर रोकिए। सिर्फ इसलिए कि यह वाक्य बार-बार दोहराया जाता है, इसका मतलब यह नहीं है कि यह सच है।
तो, यहाँ क्या हो रहा है?
दावों को समझने के लिए हमें इस पर गौर करना होगा। वैज्ञानिक विधि.
विज्ञान में, प्रक्रिया एक परिकल्पना से शुरू होती है। आप किसी चीज़ के काम करने के तरीके के बारे में एक शिक्षित अनुमान लगाते हैं। इसके बाद, आप उस परिकल्पना का परीक्षण करने के लिए एक व्यावहारिक प्रयोग तैयार करते हैं।
परिकल्पना की वैधता प्रयोग के परिणाम पर निर्भर करती है। यदि परिणाम परिकल्पना का समर्थन करते हैं, तो यह विश्वसनीयता प्राप्त करती है। लेकिन इससे भी अधिक है। प्रयोग को दोहराया जाना चाहिए। अन्य वैज्ञानिकों को समान परिस्थितियों में समान परिणाम प्राप्त करने चाहिए। यह दोहराव वैज्ञानिक समुदाय में परिकल्पना की जगह को मजबूत करता है।
इस पद्धति के माध्यम से विज्ञान ज्ञान का निर्माण करता है - एक समय में एक परिकल्पना।
इस व्यावहारिक उदाहरण पर विचार करें: संगीत एक प्रकार की सूचना है। डॉ. निमट्ज़ का दावा है कि उन्होंने क्वांटम सुरंग के माध्यम से प्रकाश की गति से भी तेज़ गति से संगीत प्रसारित किया। इस व्यावहारिक प्रयोग में, जिसे कई बार दोहराया गया है, आप मोजार्ट को प्रकाश की गति से 4.7 गुना तेज़ गति से सुन सकते हैं।
यह शास्त्रीय संगीत है जो गैर-शास्त्रीय तरीके से प्रसारित किया गया है
तो क्या वास्तव में यहाँ क्या हो रहा है?
मानव चेतना के कुछ तत्व ऐसी गति से आगे बढ़ रहे हैं जो भौतिकी की हमारी पारंपरिक समझ को चुनौती देते हैं। सुपरल्यूमिनल तरंगें अजीबोगरीब गुणों के साथ आती हैं, जिनमें से एक शास्त्रीय भौतिकविदों की रीढ़ में सिहरन पैदा कर सकता है: कारण-और-प्रभाव उलटाव। एक परिदृश्य की कल्पना करें जहां मस्तिष्क आपके द्वारा उनके बारे में जागरूक होने से पहले ही निर्णय ले लेता है! (और यह बिल्कुल वैसा ही है: मस्तिष्क आपके जानने से पहले ही निर्णय ले लेता है।)
हालांकि, यह ध्यान देने योग्य है कि ये सुपरल्यूमिनल सिग्नल प्रकाश की गति से यात्रा करने वाले पारंपरिक सिग्नलों से केवल कुछ सेकंड आगे होते हैं। वे तरंग के समूह वेग से अधिक नहीं होते, यही कारण है कि वे सापेक्षता के सिद्धांत को नहीं तोड़ते। यह बाद में स्पष्ट हो जाएगा। यह मुख्यतः सैद्धांतिक भौतिकविदों के लिए रुचि का विषय है।
झरने?
सुपरल्यूमिनल इवेनसेंट तरंगों का असली रहस्य यह नहीं है कि इवेनसेंट तरंग स्वयं प्रकाश से तेज़ है। यह तब होता है जब एक सामान्य तरंग एक अवरोध, तथाकथित क्वांटम सुरंग से टकराती है, तब तरंग सुरंग के दूसरी ओर शास्त्रीय रूप से संभव से अधिक तेज़ी से, प्रकाश की गति से भी तेज़ गति से फिर से उभरती है।
जब कोई तरंग एक अवरोध वाली क्वांटम सुरंग से गुज़रती है, तो वह प्रकाश से 4.7 गुना तेज़ हो जाती है। अगर आप एक के बाद एक कई अवरोध बनाते हैं और सिग्नल भेजते हैं, तो क्या होगा?
क्वांटम सुरंग
क्या कोई ऐसा प्रपातीय प्रभाव हो सकता है, जिससे गति और भी तेज़ हो जाए? कोलोन विश्वविद्यालय के प्रोफेसर गुंटर निमट्ज़ ने सफलतापूर्वक इसका प्रदर्शन किया, उन्होंने एक क्षणभंगुर तरंग को अवरोधों की एक श्रृंखला से गुज़रते हुए प्रकाश की तुलना में 36 गुना तेज़ गति प्राप्त की।
तो, हमारे मस्तिष्क के भीतर कैस्केड के बारे में क्या? हमारे संज्ञान और चेतना के लिए इसका क्या मतलब हो सकता है? यह आपके लिए चिंतन करने के लिए एक पहेली है।
अब तक, क्षणभंगुर तरंगों के प्रकाश से भी तेज़ पहलू का स्थूल जगत में बहुत कम व्यावहारिक अनुप्रयोग है, लेकिन यह अर्धचालकों और इलेक्ट्रॉनिक्स में उपयोगी है। हर बार जब आप अपने फ़ोन पर फ़िंगरप्रिंट सेंसर का उपयोग करते हैं, तो क्षणभंगुर तरंगें आपकी पहचान को पहचानना संभव बनाती हैं।
दुःख की बात है कि प्रकाश से भी तेज लम्बी दूरी के रेडियो ट्रांसमीटरों का सवाल ही नहीं उठता, क्योंकि ये तरंगें बहुत कम दूरी तक ही यात्रा करती हैं और उसके बाद अपनी सारी शक्ति खो देती हैं।
वाम, हम 0.05 मिमी माप का एक एस्ट्रोसाइट देखते हैं, और दाईं ओर, गैलेक्टिक नेटवर्क में एक बहुत ही समान संरचना, जिसका माप 400 मिलियन प्रकाश वर्ष है। यह 27 परिमाण के क्रम का आकार अंतर है।
मस्तिष्क में, वैज्ञानिक जानते हैं कि एस्ट्रोसाइट्स क्यों मौजूद हैं। इनकी खोज 1891 में हुई थी, और नाम का अर्थ है "तारे जैसी" कोशिकाएँ। इन मस्तिष्क कोशिकाओं की संरचना को समझाया जा सकता है; वे रसायन विज्ञान द्वारा बनाई जाती हैं। एस्ट्रोसाइट संरचना का प्रत्येक घटक डीएनए ब्लूप्रिंट के अनुसार निर्मित होता है। प्रत्येक एस्ट्रोसाइट मस्तिष्क में 2 मिलियन न्यूरॉन्स तक के लिए विद्युत मार्ग प्रदान करता है। हम वास्तव में नहीं जानते कि मस्तिष्क में इनमें से कितने एस्ट्रोसाइट्स मौजूद हैं, इसके बावजूद 150 वर्षों की गिनतीवर्तमान अनुमान के अनुसार एक ट्रिलियन एस्ट्रोसाइट्स हैं, जिनमें से प्रत्येक 2 मिलियन न्यूरॉन्स से जुड़ता है, इसलिए यह बहुत सारी कोशिकाएं हैं।
सही, हम ब्रह्मांड में एक संरचना देखते हैं जिसे गैलेक्टिक नेटवर्क के रूप में संदर्भित किया गया है। यह छवि कोपरनिकन सिद्धांत को चुनौती देती है, जो सुझाव देता है कि ब्रह्माण्ड का आकार एक समान होना चाहिए चाहे आप किसी भी दिशा में देखें। मस्तिष्क में, हम आसानी से समझा सकते हैं कि कोशिका का एक निर्माण खंड दूसरे से कैसे जुड़ता है क्योंकि दूरियाँ छोटी होती हैं। हालाँकि, ब्रह्मांड में, एक संरचना को एस्ट्रोसाइट की जटिलता तक पहुँचने में हज़ारों, लाखों या यहाँ तक कि सैकड़ों मिलियन साल लग सकते हैं। गैसों और तारों को इस जटिल नेटवर्क में संगठित होने का अवसर नहीं मिलता है क्योंकि, हमारी वर्तमान समझ के अनुसार, ब्रह्मांड में सबसे तेज़ गति प्रकाश की गति है। और आपको इस तरह के नेटवर्क को व्यवस्थित करने के लिए प्रकाश से भी तेज़ संचार की आवश्यकता होती है।
लेकिन वह कैसे काम करता है?
मौलिक टोपोलॉजी
दिलचस्प बात यह है कि क्वांटम टनलिंग का अध्ययन करने वाले शोधकर्ताओं ने अनुमान लगाया है कि क्षणभंगुर तरंगें संकेत कर सकती हैं ऐसे आयाम जहाँ समय का अस्तित्व नहीं है या ऐसे स्थान जिनमें आयतन का अभाव हो।
क्वांटम टनलिंग की घटना के परिणामस्वरूप ये क्षणभंगुर तरंगें उत्पन्न होती हैं, और भौतिकी के क्षेत्र में, संभाव्य तरंग फ़ंक्शन को ψ (Psi) द्वारा दर्शाया जाता है। बोर्न नियम के अनुसार, क्वांटम टनलिंग की संभावना को इस प्रकार व्यक्त किया जा सकता है:
अंततः, प्रकाश से भी तेज गति वाली मस्तिष्क तरंगों के अस्तित्व का बोध मेरे अपने मस्तिष्क में उभरा, जो उचित लगता है, क्योंकि यह मस्तिष्क तरंगों की कार्यप्रणाली के इर्द-गिर्द घूमता है।
— एरिक हैबिच-ट्राउट
अगले भाग में, हम उस क्षेत्र में गहराई से उतरेंगे जहाँ समय और स्थान मुड़ते हैं, जहाँ कण प्रकाश से भी तेज़ गति से यात्रा कर सकते हैं। यह घटना, जिसे सुपरलुमिनैलिटी कहा जाता है, न केवल विज्ञान कथाओं में मौजूद है, बल्कि वास्तविकता के ताने-बाने में भी व्याप्त है।
संदर्भ बिंदु: यहाँ कुछ चुनिंदा लेख और शोध सामग्री दी गई है जो यहाँ चर्चा की गई अवधारणाओं का परिचय देती हैं। बिंदु I को छोड़कर, संदर्भ II, III, IV और V विषय वस्तु से संबंधित व्यापक खोज इंजन क्वेरी से जुड़े हैं, जिससे यह सुनिश्चित होता है कि आपको यथासंभव सबसे व्यापक जानकारी तक पहुँच प्राप्त हो।
एक ऐसे क्षेत्र की कल्पना करें जहाँ समय और स्थान मुड़ते हैं, जहाँ कण प्रकाश से भी तेज़ गति से यात्रा कर सकते हैं। यह घटना, जिसे सुपरल्यूमिनैलिटी के रूप में जाना जाता है, केवल एक विज्ञान कथा का सपना नहीं है; यह वास्तविकता के मूल ताने-बाने को छूती है। आइए थॉमस हार्टमैन जैसे वैज्ञानिकों के आश्चर्यजनक निष्कर्षों का पता लगाएं, जिन्होंने 1962 में क्वांटम टनलिंग की हमारी समझ को रोशन किया।
हार्टमैन प्रभाव
क्वांटम टनलिंग समय को सबसे पहले 1962 में थॉमस एल्टन हार्टमैन ने मापा था, जब वे डलास में टेक्सास इंस्ट्रूमेंट्स के लिए काम करते थे।तरंग पैकेट की सुरंग बनाना,” उन्होंने बताया कि कणों, जैसे कि फोटॉन, को किसी अवरोध को पार करने में लगने वाला समय उस अवरोध की लंबाई पर निर्भर नहीं करता है।
चित्र: टी.ई. हार्टमैन (1931 से 2009), फोटो के बाद का स्केच, (c) 2025
जब हम क्वांटम यांत्रिकी की इस विचित्र दुनिया में गहराई से उतरते हैं, तो ऐसा प्रतीत होता है कि, कुछ अवरोधों के अंदर, कण गति की हमारी शास्त्रीय समझ को चुनौती देते प्रतीत होते हैं - लगभग वैसे ही जैसे वे किसी ब्रह्मांडीय छिद्र से फिसल रहे हों।
जैसे-जैसे प्रौद्योगिकी उन्नत हुई है, हम समय के सूक्ष्मतम अंतराल को मापने में सक्षम हो गए हैं, जिससे हमें पता चला है कि क्वांटम टनलिंग की प्रक्रिया कणों को प्रकाश की गति से भी अधिक तेजी से अवरोधों को पार करने की अनुमति दे सकती है।
इस घड़ी का नाम आयरिश भौतिक विज्ञानी के नाम पर रखा गया हैजोसेफ लार्मोरचुंबकीय क्षेत्रों में कणों के घूमने को ट्रैक करता है। स्टाइनबर्ग ने पाया कि रूबिडियम परमाणुओं को अवरोधों से गुजरने में आश्चर्यजनक रूप से कम समय लगता है - केवल 0.61 मिलीसेकंड - जो कि खाली स्थान की तुलना में काफी तेज़ है। यह 1980 के दशक में सिद्धांतित लार्मोर क्लॉक अवधि के अनुरूप है!
"हार्टमैन के पेपर के बाद से छह दशकों में, चाहे भौतिकविदों ने टनलिंग समय को कितनी भी सावधानी से परिभाषित किया हो या उन्होंने इसे प्रयोगशाला में कितनी भी सटीकता से मापा हो, उन्होंने पाया है कि क्वांटम टनलिंग हमेशा हार्टमैन प्रभाव को प्रदर्शित करती है। टनलिंग लाइलाज, मज़बूती से सुपरल्यूमिनल लगती है।" नताली वोल्चोवर
"गणना से पता चलता है कि यदि आप अवरोध को बहुत मोटा बनाते हैं, तो गति में वृद्धि से परमाणु प्रकाश की तुलना में अधिक तेजी से एक ओर से दूसरी ओर सुरंग बना सकेंगे।" डॉ. एफ्राइम स्टीनबर्ग
ये निष्कर्ष दिलचस्प प्रश्न उठाते हैं: अवरोध के अन्दर क्या होता है?
बाधा की प्रकृति
जब डॉ. निमट्ज़ के एक सहयोगी होर्स्ट ऐचमैन से पूछा गया कि इस अवरोध के भीतर क्या होता है, तो उन्होंने एक विचारोत्तेजक चर्चा की। उन्होंने कहा कि, दिलचस्प बात यह है कि सुरंग के अंत में उभरने वाली लहर, प्रवेश करने से पहले की लहर के साथ चरण में रहती है। इसका क्या मतलब है? यह सुझाव देता है कि, किसी तरह, इस तरह की सुरंग बनाने की स्थिति में समय की प्रकृति बदल सकती है, या गायब भी हो सकती है।
10. अगस्त 2023, 3:03 अपराह्न "हमारे सुरंग प्रयोगों में, तरंग सुरंग के आउटपुट पर उसी चरण के साथ तुरंत बाहर निकलती है और बहुत अधिक हानि के साथ 'सामान्य आरएफ' के रूप में प्रसारित होती है। सुरंग के अंदर सवाल यह है कि शून्य समय में क्या हो सकता है? सादर, होर्स्ट ऐचमन”
“होह्लिटर” क्वांटम टनलिंग डिवाइस
"आपके उत्तर के लिए धन्यवाद। तो, सिग्नल की तरंगदैर्ध्य और आवृत्ति को ध्यान में रखते हुए, आप कह रहे हैं कि स्पष्ट सुपरलुमिनल व्यवहार केवल सुरंग के अंदर ही प्रकट होता है? और सुरंग प्रिज्मों के बीच हवा का अंतराल है? सादर, एरिक"
10 अगस्त, 2023, 4:16 अपराह्न "यह सही है... मुद्दा यह है कि, जब आप सुरंग से पहले और बाद के चरण को देखते हैं, तो आपको एक ही चरण दिखाई देता है... हमने 3 से 15 सेमी के बीच अलग-अलग टुकड़ों का इस्तेमाल किया, और उन सभी ने एक ही परिणाम दिखाया - कोई चरण परिवर्तन नहीं।
हमारी व्याख्या है: चरण-परिवर्तन = 0 अर्थात समय = 0
तो हमारे पास एक ऐसा स्थान है जिसमें कोई समय नहीं है, और इससे भी अधिक, अगर यह सही है, तो इस स्थान का कोई आयतन नहीं है, है ना??? होर्स्ट ऐचमैन”
मैंने इस प्रश्न पर कुछ देर तक विचार किया और समस्या को स्थलाकृतिक दृष्टिकोण से देखा:
"मेरी अंतर्दृष्टि में से एक यह प्रतीत होता है कि एक सुरंग बनाने वाला फोटॉन कण 4-आयामी अंतरिक्ष से शून्य-आयामी बिंदु के रूप में बाहर निकलता है, एक-आयामी स्ट्रिंग (सुरंग) के रूप में सुरंग बनाता है, और 4D अंतरिक्ष में एक क्षेत्र/तरंग के रूप में पुनः उभरता है।"
एरिच हबीच-ट्रौट
एक ऐसे विश्व की कल्पना करें जहां समय और दूरी अपना अर्थ खो देते हैं, एक प्रकार का ब्रह्मांडीय ताना-बाना जहां कण हमारे त्रि-आयामी अनुभव की सामान्य बाधाओं के बिना अंदर और बाहर आते-जाते रहते हैं।
यह स्थान एक प्रकार का एकजुटता के सूत्रधारजहाँ न तो दूरी है और न ही समय। कण/तरंगें पूरे ब्रह्मांड में लगातार इस आयाम से अंदर-बाहर आती-जाती रहती हैं।
क्वांटम क्षेत्र
अज्ञात में यह बहाव हमें क्वांटम दायरे के विचार तक ले जाता है - एक ऐसा स्थान जो हमारी सामान्य धारणाओं को चुनौती देता है। यहाँ, कण स्वतंत्र रूप से और निरंतर गति करते हैं, जिससे तरंगें बनती हैं जो हमारी समझ से परे एक क्षेत्र से छिपी हुई जानकारी ले जा सकती हैं। इसे आयामों के बीच एक पुल के रूप में सोचें, जहाँ सब कुछ एक कालातीत टेपेस्ट्री में आपस में जुड़ा हुआ है।
कुछ क्वांटा (कण/तरंगें) इस एक-आयामी अंतरिक्ष क्षेत्र में लगातार चलते रहते हैं, बस एक अवरोध से टकराकर, एक क्षणभंगुर तरंग उत्पन्न करते हैं। मेरा मानना है कि सुरंगित क्वांटा ले जाते हैं करें-
इस सुपरलुमिनल ट्रैवर्सल से।
वे हमारे दृष्टिकोण से एक अजीब जगह पर गए हैं, क्वांटम क्षेत्र। वे समय के बिना एक आयामी स्थान पर गए हैं। जहाँ सब कुछ एक साथ हर जगह और हर समय है।
काल्पनिक मार्वल ब्रह्मांड के क्वांटम क्षेत्र में क्वांटम यांत्रिक प्रभाव 100 नैनोमीटर से कम के पैमाने पर महत्वपूर्ण हो जाते हैं। वास्तव में, यह सिस्टम के आकार पर निर्भर करता है।
अतः, यह एक बहुत ही महत्वपूर्ण क्वांटम यांत्रिक प्रभाव है जिसके बिना पृथ्वी पर जीवन संभव नहीं होगा।
मानव न्यूरॉन के तंतुओं का व्यास लगभग होता है। 10 नैनोमीटरयानी 500 से 1000 गुना छोटा। और इसमें क्वांटम प्रभाव भी शामिल है।
चेतना की कठिन समस्या
अब, हम एक गहरे दार्शनिक प्रश्न पर आते हैं: चेतना के बारे में क्या? यह कहाँ से उत्पन्न होती है, और कहाँ जाती है? यह रहस्य, जिसे अक्सर "कठिन समस्या" के रूप में माना जाता है, हमारे विचारों और हमारे मस्तिष्क की जैविक मशीनरी के बीच संबंध को उजागर करने का प्रयास करता है।
क्या यह हो सकता है कि चेतना हमारे मस्तिष्क की तरंगों के माध्यम से जुड़ने की क्षमता से उत्पन्न होती है जो एक विचित्र एक-आयामी क्षेत्र को पार करती है? यदि ऐसा है, तो यह सुझाव देता है कि जीवन के सबसे सरल रूप भी चेतना से भरे हो सकते हैं - लगभग अंधेरे में जागरूकता की छोटी-छोटी चिंगारी की तरह। चेतना। यह कहाँ से आती है, और कहाँ जाती है?
क्यूनीफॉर्म: पहली मानव लेखन शैली पिरामिडनुमा न्यूरॉन्स जैसी दिखती थी, जिन्होंने लेखन का आविष्कार किया था।
"मैं मानता हूं कि मानव चेतना न्यूरॉन्स और अन्य मस्तिष्क संरचनाओं के माध्यम से एक-आयामी समय और स्थान-रहित क्षेत्र से जुड़ने के कारण उत्पन्न होती है क्षणभंगुर तरंगों के माध्यम से। इस क्वांटम क्षेत्र से, सूचना हमारी दुनिया में पहुंचाई जाती है।”
एरिच हबीच-ट्रौट
यदि यह परिकल्पना सही है, तो कोई भी इकाई जो (विद्युत चुम्बकीय) तरंगें या ऊर्जा उत्पन्न करती है, चेतना प्राप्त करने या उस तक पहुँचने में सक्षम हो सकती है। मिडीक्लोरिया अमीबा, माइटोकॉन्ड्रिया के पूर्वज जो मानव कोशिका में एटीपी का उत्पादन करते हैं, चेतना प्राप्त कर सकते हैं। सीपीयू और जीपीयू भी एक हद तक इस घटना के अधीन हैं।
सुपरलुमिनल संचार की खोज
एक ऐसे ब्रह्मांड की कल्पना करें जहाँ कुछ कण बाधाओं को पार करके ऐसे निकल सकते हैं जैसे कि वे वहाँ थे ही नहीं - स्थान या समय से विवश नहीं, बल्कि वास्तविकता के साथ लुका-छिपी का खेल खेल रहे हों। यह विचार, जो कभी विज्ञान कथा का क्षेत्र था, क्वांटम यांत्रिकी की एक अनोखी विशेषता में निहित है जिसे सुपरल्यूमिनल टनलिंग के रूप में जाना जाता है।
हर्बिग-हरो 46/47: गैलेक्टिक प्रश्न चिह्न।
डॉ. एफ्राइम स्टीनबर्ग का सुझाव है कि एक कण अवरोध के माध्यम से सुरंग बनाकर यह आश्चर्यजनक कार्य कर सकता है, लेकिन यह पारंपरिक अर्थों में खुले स्थान में सूचना नहीं पहुंचाता है। किसी के कान तक पहुंचने से पहले ही फुसफुसाहट की तरह, एक कण जो किसी के कान तक पहुंचने से पहले ही खो जाता है, वह एक ऐसा कण है जो किसी के कान तक पहुंचने से पहले ही खो जाता है। एकल सुरंग कण “हवा के माध्यम से” संचार नहीं कर सकता है।
और इससे दिलचस्प सवाल उठता है: क्या होगा अगर हम इसका दोहन कर सकें? संचार के लिए क्वांटम टनलिंग परिघटनामंगल मिशन को तत्काल संदेश भेजने या दूर के तारों से संकेत प्राप्त करने के हमारे सपनों के बारे में सोचें। ऐसे सुपरल्यूमिनल सिग्नल ब्रह्मांड की खोज के हमारे तरीके में क्रांतिकारी बदलाव ला सकते हैं।
कई सालों तक मैं इस दिलचस्प संभावना पर विचार करता रहा। मैंने ब्रह्मांडीय माइक्रोवेव पृष्ठभूमि पर विचार किया - जो कि ब्रह्मांड से निकलने वाली विकिरण की एक हल्की फुसफुसाहट है। बड़ा धमाका ब्रह्मांड के हर कोने से निकलने वाला यह पृष्ठभूमि शोर, आवृत्तियों की एक सिम्फनी जैसा दिखता है, जो हमारे परिचित टीवी बैंड में 300 मेगाहर्ट्ज से लेकर 630 गीगाहर्ट्ज तक फैला हुआ है। फिर भी, ब्रह्मांड की विशालता के बावजूद, हम पाते हैं कि ये फ्री-रेंज सुपरल्यूमिनल तरंगें बस प्रकट नहीं होती हैं।
मनुष्य का सूक्ष्म दर्शन
यह हमें दूसरे आयाम की ओर ले जाता है-मस्तिष्क का सूक्ष्म जगत! हाल ही में, मुझे एक शोध मिला, जिसमें एक उल्लेखनीय बात सामने आई: हमारे मस्तिष्क के जटिल परिदृश्य में क्षणभंगुर तरंगें मौजूद हैं, ऐसा कहना है। WETCOW शोध पत्रये क्षणभंगुर तरंगें उन जगहों पर पनपती हैं जहाँ विद्युत चुम्बकीय ऊर्जा प्रवाहित होती है - जैसे जीवित कोशिकाएँ, पौधे और यहाँ तक कि वे प्रोसेसर जो हमारे कंप्यूटर को शक्ति प्रदान करते हैं। वे पूरे ब्रह्मांड में और विशेष रूप से पनपते हैं।
क्या प्रकाश से भी तेज़ ये तरंगें सामान्य सापेक्षता के मूल सिद्धांतों का उल्लंघन करती हैं? प्रोफेसर स्टीनबर्ग हमें आश्वस्त करते हैं, "बिल्कुल नहीं।" सच्चे सुपरल्यूमिनल सिग्नलिंग के लिए यह आवश्यक होगा कि ये तरंगें अपनी तरंगदैर्घ्य से आगे निकल जाएँ, एक ऐसी उपलब्धि जो, हमारी वर्तमान समझ के अनुसार, पहुँच से परे है। इसके बजाय, ये क्षणभंगुर तरंगें प्रकाश की गति की मानक सीमाओं के भीतर ही रहती हैं, जो उन्हें एक संक्षिप्त चमक के बाद अदृश्य बना देती हैं - बिल्कुल अंधेरे में एक जुगनू की तरह जो रोशनी देता है, लेकिन फिर तेज़ी से मंद हो जाता है और अदृश्य हो जाता है।
तो, सामान्य परिस्थितियों में, सुपरल्यूमिनल क्षणभंगुर तरंग है अंदर इस चित्र (डी) में दिखाए अनुसार सामान्य गति तरंग:
सुरंगित संकेत बनाम सामान्य हवाई फोटॉन का समय दाएँ से बाएँ चलते हुए, d मुख्य लहर से पहले आता है ←
सुरंगनुमा सिग्नल के पास तरंग से आगे निकलने का समय नहीं होता, क्योंकि क्षणभंगुर तरंगें, वैसे तो क्षणभंगुर होती हैं। वे गायब हो जाती हैं; लुप्त होना ही "क्षणभंगुर" शब्द का अर्थ है। इस कारण से वे कार्य-कारण या सामान्य सापेक्षता का उल्लंघन नहीं करती हैं।
फिर भी, उनके गायब होने से पहले, कुछ रोमांचक होता है: ये क्षणभंगुर तरंगें आश्चर्यजनक गति से यात्रा कर सकती हैं। जैसा कि हमने पहले पाया, वे प्रकाश से भी तेज़ हैं। मस्तिष्क की भूलभुलैया के भीतर, जहाँ सेरेब्रल कॉर्टेक्स के एक घन मिलीमीटर में होता है, औसतन, 126,823 न्यूरॉन्स, इसमें असाधारण रूप से तेज़ सिग्नल प्रोसेसिंग की संभावना निहित है। ये छोटी संरचनाएं इस तरह से परस्पर क्रिया करती हैं जो सीमाओं से परे संचार के एक ऐसे रूप को सुगम बना सकती हैं।
और यह वास्तव में रोमांचक बात है: मस्तिष्क के अंदर सुपरलुमिनल सूचना संचरण संभव है। क्योंकि मस्तिष्क में ऐसी अनेक संरचनाएं हैं जो तरंगदैर्घ्य के आयामों के भीतर इन संकेतों को संसाधित कर सकती हैं।
इन तरंगों को क्षणभंगुर क्षेत्र भी कहा जाता है, जो डीएनए, पेप्टाइड्स, प्रोटीन और न्यूरॉन्स जैसे विशिष्ट जैव-आणविक घटकों के आयामों से मेल खाते हैं।
"मानव मस्तिष्क की अत्यधिक प्रसंस्करण गति को आंशिक रूप से या पूर्णतः सुपरल्यूमिनल सिग्नल ट्रांसमिशन द्वारा समझाया जा सकता है।"
एरिच हबीच-ट्रौट
क्षणभंगुर तरंग क्षय: अदृश्य की यात्रा
ब्रह्मांड की भव्य खोज में, हम कई तरह की घटनाओं का सामना करते हैं, जिनमें से कई हमारी इंद्रियों को चकमा देती हैं और हमारी समझ को चुनौती देती हैं। ऐसी ही एक मायावी इकाई है क्षणभंगुर तरंग या क्षेत्र।
लेकिन ये नाजुक तरंगें इतनी जल्दी क्यों बिखर जाती हैं? क्या ऐसा हो सकता है कि जब वे यात्रा करती हैं, तो उन्हें एक अदृश्य प्रतिरोध का सामना करना पड़ता है, ठीक वैसे ही जैसे पानी में चलती नाव? जब हम किसी वस्तु को स्थिर माध्यम से धकेलते हैं, तो हमें एक स्पष्ट बल का सामना करना पड़ता है जो हमारे प्रयासों का प्रतिरोध करता है - माध्यम की जड़ता। उदाहरण के लिए, यदि आप स्याही की एक बूंद को पानी के एक स्थिर गिलास में डालते हैं, तो आप स्याही को एक सुंदर, घुमावदार नृत्य में फैलते हुए देखेंगे। ऐसा इसलिए नहीं होता है क्योंकि स्याही फैलना चाहती है, बल्कि इसलिए होता है क्योंकि यह पानी के प्रतिरोध का सामना करती है।
क्या क्षणभंगुर तरंग का फैलाव बहुत ही कारण से होता है? चार-आयामी अंतरिक्ष की जड़ता या श्यानता कि क्षणभंगुर तरंग क्वांटम सुरंग से निकलने के बाद मिलती है?
कुछ क्षण रुकें और सोचें। आप इस सादृश्य को कैसे सिद्ध कर सकते हैं?
भौतिकी के हमारे अन्वेषण में, हम अक्सर विभिन्न प्रकार की तरंगों का सामना करते हैं। उदाहरण के लिए, पारंपरिक रेडियो तरंगें, अपने स्रोत से तय की गई दूरी के वर्ग के अनुसार अपनी ताकत में गिरावट लाती हैं। इसका मतलब है कि जैसे-जैसे हम दो बार दूर जाते हैं, सिग्नल चार गुना कमज़ोर होता जाता है। इसके विपरीत, क्षणभंगुर तरंगें अधिक नाटकीय गिरावट दर्शाती हैं। वे तेजी से गायब हो जाती हैं, उनकी उपस्थिति उनके पारंपरिक समकक्षों की तुलना में कहीं अधिक तेज़ी से फीकी पड़ जाती है, जैसे हवा के अप्रत्याशित झोंके से मोमबत्तियाँ बुझ जाती हैं।
आप एक ऐसी तरंग ढूंढने का प्रयास कर सकते हैं जो उसी तरीके से क्षय होती हो।
शोध से पता चला है कि समुद्री लहरें तेजी से घटती हैं:
वास्तव में, क्षणभंगुर लहरें समुद्र की लहरों के समान ही तरीके से क्षय होती हैं। और क्या यह एक सुंदर सादृश्य नहीं है?
हम एक विचार से दूसरे विचार पर कैसे पहुँचते हैं? हम अवधारणाओं को कैसे अपनाते हैं, इससे पहले कि हमारे पास उनके समर्थन में ठोस सबूत हों? इसका उत्तर अक्सर इस बात में निहित होता है कि सोचा प्रयोग—शक्तिशाली मानसिक यात्राएं जो हमारी जिज्ञासा को जगाती हैं और हमें परिकल्पनाओं तक ले जाती हैं।
परिकल्पना एक शिक्षित धारणा है, खोज की ओर जाने वाले मार्ग पर रखा गया एक कदम। लेकिन प्रत्येक परिकल्पना को प्रयोगात्मक परीक्षण की कठोरता का सामना करना पड़ता है, जहाँ इसकी जाँच की जा सकती है और उसी रास्ते पर चलने वाले अन्य लोगों द्वारा इसे दोहराया जा सकता है।
समझ की खोज में, आइए हम थोड़ी-बहुत कल्पना करें। पानी में तैरती नाव की कल्पना करने के बजाय, एक बड़े जानवर - गाय की कल्पना करें।
हाँ, एक "गीली गाय!" यह छवि जितनी मनोरंजक हो सकती है, यह कमजोर रूप से लुप्तप्राय कॉर्टिकल तरंगों के बारे में एक महत्वपूर्ण बिंदु को दर्शाती है।
हालांकि WETCOW मॉडल के मूल लेखकों ने क्षणभंगुर तरंगों के संबंध में सुपरलुमिनैलिटी की अवधारणा का स्पष्ट रूप से उल्लेख नहीं किया था, लेकिन इन विचारों के बारे में हमारी खोज से दिलचस्प संबंध सामने आए हैं, जो स्थापित विज्ञान और नवीन खोजों के बीच की सीमाओं को चुनौती देते हैं।
परिणाम: हमारे निष्कर्षों के ब्रह्मांडीय निहितार्थ
गैलिंस्की/फ्रैंक WETCOW मॉडल को कारगर बनाने के लिए क्षणभंगुर मस्तिष्क तरंगों की प्रकाश से भी तेज उत्पत्ति की आवश्यकता नहीं है।
बल्कि, उनकी प्रकृति एक लेंस के रूप में कार्य करती है जिसके माध्यम से हम उस उल्लेखनीय गति को देख सकते हैं जिस पर हमारा मस्तिष्क सूचना को संसाधित करता है और चेतना के ढांचे के साथ जुड़ता है।
क्वांटम भौतिकी के क्षेत्र में, हम प्रतीक Ψ (Psi) का सामना करते हैं, जो संभाव्य तरंग फ़ंक्शन का प्रतिनिधित्व करता है - एक रहस्यमय गणितीय इकाई जो अस्तित्व की अनिश्चितताओं को व्यक्त करती है। फिर भी, परामनोविज्ञान में, यही प्रतीक अलौकिक अनुभवों के पीछे अज्ञात कारक का प्रतीक है जिसे विज्ञान अभी तक समझा नहीं पाया है।
इस परिदृश्य के बीच, हम असाधारण घटनाओं का सामना करते हैं जैसे कि पूर्वज्ञान - भविष्य को देखने की आकर्षक क्षमता। कारण और प्रभाव द्वारा शासित दुनिया में, हम इन विरोधाभासी घटनाओं को कैसे समेट सकते हैं? क्षणभंगुर तरंगों की उपस्थिति एक आकर्षक संभावना प्रदान करती है: क्या होगा यदि, उनकी अजीब प्रकृति के भीतर, कारण और प्रभाव का उलटा होना केवल काल्पनिक चिंतन न हो बल्कि ऐसी संभावनाएँ हों जिन पर हमें पुनर्विचार करना चाहिए?
"जब हम प्रकाश की गति से भी तेज गति की घटनाओं के रहस्यों का पता लगाते हैं, तो हमें और भी असाधारण खोजों का सामना करना पड़ सकता है। उदाहरण के लिए, क्वांटम उलझाव - एक सिद्ध भौतिक घटना - और इसका काल्पनिक मनोवैज्ञानिक एनालॉग, टेलीपैथी, दोनों ही सैद्धांतिक भौतिकी के कुछ मॉडलों में वर्णित शून्य-ब्रेन की एकीकृत टोपोलॉजिकल संरचना से उत्पन्न हो सकते हैं।"
एरिच हबीच-ट्रौट
ब्रह्मांड लुभावने रहस्यों से भरा पड़ा है, जिन्हें हम उजागर करना चाहते हैं, और यह हमें ऐसे संसारों की खोज करने के लिए आमंत्रित करता है, जहां समय और स्थान की सीमाएं हमारी कल्पना से भी परे विस्तारित हो सकती हैं।
तो आइए, मेरे मित्रों, हम जिज्ञासु बने रहें, क्योंकि हम एक साथ विशालता में आगे बढ़ते हैं, ब्रह्मांड के रहस्यों को उजागर करते हैं और हमारे भीतर छिपी खोज की चिंगारी को पोषित करते हैं।
सुपरल्यूमिनल ब्रेनवेव्स की अवधारणा और चेतना और क्वांटम टनलिंग के संदर्भ में क्षणभंगुर तरंगों के संभावित निहितार्थों के बारे में पढ़ने के बाद, तंत्रिका विज्ञान और क्वांटम भौतिकी के बीच परस्पर क्रिया के बारे में आपके क्या विचार हैं? क्या आपको हमारे मस्तिष्क में प्रकाश से भी तेज़ संचार का विचार प्रशंसनीय लगता है, या आपको लगता है कि यह विज्ञान कथा के दायरे में ही रहेगा? आप कैसे मानते हैं कि ये सिद्धांत चेतना और बुद्धिमत्ता की हमारी समझ को प्रभावित कर सकते हैं? इसके अतिरिक्त, ब्रेनवेव तकनीक में ऐसी प्रगति के नैतिक निहितार्थों पर विचार करें - क्या चिंताएँ या अवसर मन में आते हैं?
सर्वोत्तम अनुभव प्रदान करने के लिए, हम डिवाइस की जानकारी को स्टोर और/या एक्सेस करने के लिए कुकीज़ जैसी तकनीकों का उपयोग करते हैं। इन तकनीकों के लिए सहमति देने से हम इस साइट पर ब्राउज़िंग व्यवहार या अद्वितीय आईडी जैसे डेटा को संसाधित कर सकेंगे। सहमति नहीं देना या सहमति वापस लेना, कुछ विशेषताओं और कार्यों पर प्रतिकूल प्रभाव डाल सकता है।
कार्यात्मक
हमेशा सक्रिय
ग्राहक या उपयोगकर्ता द्वारा स्पष्ट रूप से अनुरोध की गई विशिष्ट सेवा के उपयोग को सक्षम करने के वैध उद्देश्य के लिए या इलेक्ट्रॉनिक संचार नेटवर्क पर संचार के प्रसारण के एकमात्र उद्देश्य के लिए तकनीकी भंडारण या पहुंच कड़ाई से आवश्यक है।
प्राथमिकताएँ
ग्राहक या उपयोगकर्ता द्वारा अनुरोध नहीं की गई वरीयताओं को संग्रहीत करने के वैध उद्देश्य के लिए तकनीकी भंडारण या पहुंच आवश्यक है।
सांख्यिकी (स्टेटिस्टिक्स)
तकनीकी भंडारण या पहुंच जो विशेष रूप से सांख्यिकीय उद्देश्यों के लिए उपयोग की जाती है।तकनीकी भंडारण या पहुंच जो विशेष रूप से अज्ञात सांख्यिकीय उद्देश्यों के लिए उपयोग की जाती है। एक सम्मन के बिना, आपके इंटरनेट सेवा प्रदाता की ओर से स्वैच्छिक अनुपालन, या किसी तीसरे पक्ष से अतिरिक्त रिकॉर्ड, केवल इस उद्देश्य के लिए संग्रहीत या पुनर्प्राप्त की गई जानकारी का उपयोग आमतौर पर आपकी पहचान के लिए नहीं किया जा सकता है।
विपणन (मार्केटिंग)
विज्ञापन भेजने के लिए, या समान मार्केटिंग उद्देश्यों के लिए किसी वेबसाइट या कई वेबसाइटों पर उपयोगकर्ता को ट्रैक करने के लिए उपयोगकर्ता प्रोफ़ाइल बनाने के लिए तकनीकी भंडारण या पहुंच की आवश्यकता होती है।
हम अपनी वेबसाइट और अपनी सेवा को अनुकूलित करने के लिए कुकीज़ का उपयोग करते हैं।
कार्यात्मक
हमेशा सक्रिय
ग्राहक या उपयोगकर्ता द्वारा स्पष्ट रूप से अनुरोध की गई विशिष्ट सेवा के उपयोग को सक्षम करने के वैध उद्देश्य के लिए या इलेक्ट्रॉनिक संचार नेटवर्क पर संचार के प्रसारण के एकमात्र उद्देश्य के लिए तकनीकी भंडारण या पहुंच कड़ाई से आवश्यक है।
प्राथमिकताएँ
ग्राहक या उपयोगकर्ता द्वारा अनुरोध नहीं की गई वरीयताओं को संग्रहीत करने के वैध उद्देश्य के लिए तकनीकी भंडारण या पहुंच आवश्यक है।
सांख्यिकी (स्टेटिस्टिक्स)
तकनीकी भंडारण या पहुंच जो विशेष रूप से सांख्यिकीय उद्देश्यों के लिए उपयोग की जाती है।तकनीकी भंडारण या पहुंच जो विशेष रूप से अज्ञात सांख्यिकीय उद्देश्यों के लिए उपयोग की जाती है। एक सम्मन के बिना, आपके इंटरनेट सेवा प्रदाता की ओर से स्वैच्छिक अनुपालन, या किसी तीसरे पक्ष से अतिरिक्त रिकॉर्ड, केवल इस उद्देश्य के लिए संग्रहीत या पुनर्प्राप्त की गई जानकारी का उपयोग आमतौर पर आपकी पहचान के लिए नहीं किया जा सकता है।
विपणन (मार्केटिंग)
विज्ञापन भेजने के लिए, या समान मार्केटिंग उद्देश्यों के लिए किसी वेबसाइट या कई वेबसाइटों पर उपयोगकर्ता को ट्रैक करने के लिए उपयोगकर्ता प्रोफ़ाइल बनाने के लिए तकनीकी भंडारण या पहुंच की आवश्यकता होती है।