1994'te Profesör Dr. Günter Nimtz ve meslektaşı Horst Aichmann, Hewlett-Packard'da ışıktan daha hızlı bilgi iletmeyi içeren çığır açıcı deneyler gerçekleştirdiler. Kuantum tünelleme adı verilen bir fenomen sayesinde, ışığın 4.7 katı bir hızla çok kısa bir mesafeye bir sinyali başarıyla ilettiler. Bu dikkat çekici sonuç, bilim insanları arasında hararetli tartışmalara yol açtı, ancak yine de tekrarlanabilirliğini sürdürüyor.
IŞIĞDAN DAHA HIZLI MI?
Ne kadar inanılmaz görünse de, 1999 yılında Profesör Dr. Nimtz'in Mozart'ın 40. senfonisinin AM modülasyonlu mikrodalga sinyalini Bose çift prizmasından ışık hızının 4.7 katı hızla ilettiği sırada oradaydım.
Bilimkurgu temalı bir haber sitesinin web yöneticisinin dediği gibi,Geleceğin Müzesi”Sürekli olarak ilgi çekici konular arıyordum. Bir gün, Dr. Nimtz ve süperluminal kuantum tünellemenin gizemli süreçleri hakkında bir makaleye rastladım. Meraklandım, ona ulaştım ve o da nazikçe deneyini göstermeyi kabul etti.
Aşağıda, 9 Eylül 1999'da Nimtz'in deneyi hakkında yazdığım orijinal makaleden bir alıntı yer almaktadır: Işıktan Daha Hızlı Sinyal İletimi:
“Prof. Dr. Nimtz ile ilk kez tanıştığımda bana yeni tünelleme deneyi gösterildi. Sıradan bir insan olarak deneyinin derinlemesine bilimsel yorumuna hemen girişemiyorum ancak bugün gördüklerimi anlamaya ve içgörülerimi ve sorularımı paylaşmaya ve veriler bilindikçe bunları kullanılabilir hale getirmeye çalışacağım.”
"Prof. Nimtz'in yeni deney düzeneğinin dünya çapındaki özel fotoğraflarını ilk kez burada sunuyorum."
Bu deneyde, kuantum tünellemeli sinyal, sıradan laboratuvar uzayında seyahat eden bir sinyale karşı ölçüldü. Bunu göstermek için Dr. Nimtz, tünelleme süresini doğru bir şekilde ölçmek için bir osiloskop ve bir dedektör diyot kullandı.
Mozart, Işık Hızının 4.7 Katı
Gelecekte sorulabilecek muhtemel soruları öngörerek, altı yıl önce Mozart'ın ışık hızından hızlı iletiminin son kalan kaydını içeren kısa bir video hazırlamıştım.
Teknik sorular
Ağustos 2023'te, kuantum tünelleme deneyinin arkasındaki mühendis ve Profesör Nimtz ile çeşitli ilgili makalelerde ortak yazar olan Horst Aichmann ile yazıştım. Sinyal zamanlamasının modülasyonu ve tespiti hakkında bilgi aldım. Aşağıdaki bilgileri verdi:
“Zamanlama ölçümlerimiz sırasında, 13 MHz'lik bir tekrarlama oranı ve yaklaşık 500 pikosaniyelik bir yükselme süresi sağlayan özel filtrelemeyle donatılmış bir darbe modülatörü oluşturdum. AM sinyali, yeterince hızlı bir osiloskopla birleştirilmiş hızlı bir dedektör diyotu sayesinde kolayca tespit edilebilir ve ölçülebilir bir iz sağlar.”
Eğer kuantum tünellemesinden kaynaklanan süperluminal etkilerin varlığını kabul edersek, bu olgunun bir parçacığın çok kısa bir süre için kesinlikle yerelleştirilmiş bir takyonik duruma girmesine izin verdiği sonucuna varabiliriz.
Süperluminal tünelleme, dünya çapındaki laboratuvarlarda yüzlerce kez başarıyla gerçekleştirilerek günlük teknolojide uygulanabilirliğini kanıtlamıştır. Örneğin, akıllı telefonunuzdaki parmak izi okuyucusu kuantum tünellemeyi kullanır. Bunu düşünmeyebilirsiniz, ancak basitçe işe yarıyor!
Parmak İzi Okuyucular ve Kuantum Tünelleme
Kırmızı lazer işaretçisiyle (birkaç yüz terahertz frekansında çalışan) kuantum tünelleme gerçekleştiğinde, yüksek frekans nedeniyle geçici takiyonik alan yalnızca birkaç pikometre uzanır.
Nimtz'in deneyleri sırasında, tesadüfen Helium-8.7 emisyonlarının dalga boyuyla eşleşen 3 GHz'lik bir frekans kullandı. Bu özel frekans, geçici alanının prizmalar arasında birkaç santimetreden daha uzun bir mesafede tespit edilebilmesini sağladı. (Üniversite laboratuvarında bulunan mikrodalga yayıcının bu frekansta çalışması tesadüf değildi.)
İlginçtir ki, kullanılan frekans ne kadar düşük olursa, geçici alanın bariyerden o kadar geniş yayıldığı görülmektedir.
Son zamanlarda bu çığır açan deney şu şekilde tekrarlandı: Peter Elsen ve Simon Tebeckbulgularını “Gençlik araması2019 yılında Almanya'nın prestijli öğrenci fizik yarışmasında birincilik ödülünü kazandılar. Çalışmaları onlara Rheinland-Pfalz'dan birincilik ödülünün yanı sıra Almanya'ya Heraeus Ödülü'nü kazandırdı.
Hiçbir şeyin ışıktan daha hızlı hareket edemeyeceği kuralının az bilinen bir istisnası vardır: geçici dalgalar. Bu olguyu açıklamak için çeşitli açıklamalar denenmiştir.
Açıklamam basit: bir foton, topoloji, geometri, boyut, bilgi, enerji veya herhangi bir şeyin mümkün olan en küçük birimidir. Topolojik olarak, bir foton uzayda sıfır boyutlu bir noktadır; sıfır (0) boyutlu bir kuantumdur.
Kuantum tünellemenin büyüleyici balesinde, bu foton, bu saf potansiyel bir bariyeri aşar. Bunu yaparken dönüşür; bir nokta bir yerden diğerine geçerken bir çizgiye dönüşür—bir ipe. İplik teorisinin büyük anlatısında yerini bulan şey tam da bu ip, o narin filamenttir. Aniden, sıfır boyutlunun eterik aleminden tek boyutlu bir nesnenin elle tutulur gerçekliğine geçtik.
Teorik fiziğin sözlüğünde, bu tek boyutlu sicime, zaman dokusundan yoksun, sınırlı, tek boyutlu bir uzayda var olan bir "zar" da diyebiliriz.
Brane nedir?
Sicim ve kuantum teorisi alanlarında, 1-zar uzay-zamanı kat eden tek boyutlu "nesneler veya dalgalardır"—klasik yasalarla değil, kuantum fiziğinin ilkeleriyle yönetilirler. Tek boyutlu uzayı düşündüğümüzde, dördüncü boyut olan zamanı atlarız.
Bu bağlamda, fotonlar veya sicimler ışık hızından daha hızlı hareket edebilir. Bu yalnızca soyut bir matematiksel fikir değil; gerçekliğimizi yansıtır.
Geçici dalgalar, fotonların dört boyutlu kuantum dışı alana geri dönmesiyle oluşur ve bir bariyeri aşan bir fotonun ışıktan daha hızlı hareketine tanık olmamızı sağlar.
Uzay bu, Jim, ama bildiğimiz gibi değil
Albert Einstein, özel görelilik kuramını, uzay ve zamanı dört boyutlu bir uzay-zaman sürekliliğinde birleştiren matematikçi Hermann Minkowski'nin geometrisinden yararlanarak açıklamıştır.
Einstein, genel görelilik kuramını geliştirirken, kütle ve enerjinin uzay-zamanı nasıl çarpıttığını açıklamak için eğri uzay kavramını da içeren Riemann geometrisini kullandı.
Bu "topoloji"Kavisli uzay modeli", ilk çağlardan beri bizim için bitmek bilmeyen bir hayranlık kaynağı olmuştur.
Bir küre 3 ve 4 boyutta mevcuttur. Sıfır ve bir boyutlu alemlerde küre (ve zaman) mevcut değildir, çünkü bu boyutlar bir "yüzey" veya "hacim"i tanımlamak için gerekli yapıdan yoksundur, "zaman"dan bahsetmiyorum bile.
Zaman ve uzayın büküldüğü, parçacıkların ışıktan daha hızlı hareket edebildiği bir alanı hayal edin. Süperluminality olarak bilinen bu fenomen sadece bir bilim kurgu rüyası değil; gerçekliğin dokusuna dokunuyor. 1962'de kuantum tünelleme anlayışımızı aydınlatan Thomas Hartman gibi bilim insanlarının şaşırtıcı bulgularını inceleyelim.
Hartman Etkisi
Kuantum tünelleme süreleri ilk olarak Thomas Elton Hartman tarafından 1962 yılında Dallas'taki Texas Instruments'ta çalışırken ölçüldü.Bir dalga paketinin tünellenmesi,Fotonlar gibi parçacıkların bir bariyeri aşmasının ne kadar zaman aldığını, bariyerin uzunluğuna bağlı olmadığını anlattı.
Resim: TE Hartman (1931-2009), Fotoğraftan sonra taslak, (c) 2025
Kuantum mekaniğinin bu tuhaf dünyasına derinlemesine daldığımızda, belirli engellerin içinde parçacıkların, sanki kozmik bir boşluktan kayıyormuş gibi, klasik hız anlayışımıza meydan okuyabildiği ortaya çıkıyor.
Teknoloji ilerledikçe, zamanın en küçük kesitlerini bile ölçebiliyoruz. Bu da, kuantum tünelleme sürecinin parçacıkların ışık hızından daha hızlı bir şekilde engelleri aşmasına olanak sağlayabileceğini keşfetmemize yol açtı.
Bu saat, İrlandalı fizikçinin adını taşıyorJoseph Larmor, manyetik alanlardaki parçacıkların dönüşünü izler. Steinberg, rubidyum atomlarının bariyerlerden geçmesinin şaşırtıcı derecede kısa bir zaman aldığını buldu -sadece 0.61 milisaniye-, boş uzayda olduğundan önemli ölçüde daha hızlı. Bu, 1980'lerde teorileştirilen Larmor saat periyotlarıyla tutarlıdır!
"Hartman'ın makalesinden bu yana geçen altmış yılda, fizikçiler tünelleme zamanını ne kadar dikkatli bir şekilde yeniden tanımlamış olurlarsa olsunlar veya laboratuvarda ne kadar hassas bir şekilde ölçmüş olurlarsa olsunlar, kuantum tünellemenin her zaman Hartmann etkisini sergilediğini buldular. Tünelleme, tedavi edilemez, sağlam bir şekilde ışık hızından hızlı görünüyor." Natalie Wolchover
"Hesaplamalar, bariyeri çok kalın inşa ederseniz, hızlanmanın atomların bir taraftan diğerine ışıktan daha hızlı tünelleme yapmasına olanak sağlayacağını gösteriyor." Dr. Aephraim Steinberg
Bu bulgular akıllara şu soruları getiriyor: Bariyerin içinde neler oluyor?
Bariyerin Doğası
Dr. Nimtz'in meslektaşı olan Horst Aichmann, bu bariyerin içinde ne olduğu sorulduğunda düşündürücü bir tartışmaya girdi. İlginç bir şekilde, tünelin sonunda ortaya çıkan dalganın, girmeden önceki dalgayla aynı fazda kaldığını belirtti. Bu ne anlama geliyor? Bu, bir şekilde, zamanın doğasının bu tür bir tünelleme senaryosunda değişebileceğini veya hatta ortadan kalkabileceğini öne sürüyor.
10 Ağustos 2023, 3:03 "Tünelleme deneylerimizde, dalga tünel çıkışında aynı fazda anında çıkar ve çok yüksek bir kayıpla 'normal RF' olarak yayılır. Tünel içinde soru şudur: Sıfır sürede ne olabilir? Saygılarımla, Horst Aichmann”
"Cevabınız için teşekkür ederim. Yani, sinyalin dalga boyu ve frekansını hesaba katarak, görünen ışık ötesi davranışın yalnızca tünelin içinde mi ortaya çıktığını söylüyorsunuz? Ve tünel prizmalar arasındaki hava boşluğu mu? Saygılarımla, Eric"
10 Ağu 2023, 4:16 "Bu doğru... mesele şu ki, tünel öncesi ve sonrası faza baktığınızda aynı fazı görüyorsunuz... 3 ila 15 cm arasında farklı parçalar kullandık ve hepsi aynı sonucu gösterdi: FAZ DEĞİŞİMİ YOK.
Bizim yorumumuz: faz değişimi = 0, zaman = 0 anlamına gelir
Yani zamanı olmayan bir mekanımız var ve dahası, eğer bu doğruysa, bu mekanın bir hacmi yok, değil mi??? Horst Aichmann”
Bu soru üzerinde bir süre düşündüm ve soruna topolojik bir bakış açısıyla yaklaştım:
"Benim kavrayışlarımdan biri, tünelleme yapan bir foton parçacığının 4 boyutlu uzaydan sıfır boyutlu bir nokta olarak çıktığı, tek boyutlu bir ip (tünel) olarak tünellendiği ve 4 boyutlu uzayda bir alan/dalga olarak yeniden ortaya çıktığıdır."
Erich Habich Traut
Zamanın ve mesafenin anlamını yitirdiği, parçacıkların üç boyutlu deneyimimizin olağan kısıtlamaları olmadan girip çıktığı bir tür kozmik doku hayal edin.
Bu alan bir tür BİRLEŞTİRİCİ, ne mesafenin ne de zamanın var olmadığı. Parçacıklar/dalgalar, tüm evren boyunca bu boyuta girip çıkarlar, sürekli olarak.
KUANTUM ALEM
Bilinmeyene doğru bu sürüklenme bizi kuantum aleminin fikrine getiriyor; sıradan algılarımıza meydan okuyan bir alan. Burada, parçacıklar serbestçe ve sürekli hareket ederek, kavrayışımızın ötesindeki bir alemden gizli bilgi taşıyabilecek dalgalar yaratıyor. Bunu, her şeyin zamansız bir goblenle birbirine bağlı olduğu boyutlar arası bir köprü olarak düşünün.
Bazı kuantalar (parçacıklar/dalgalar) bu tek boyutlu uzay bölgesini sürekli olarak geçer, sadece bir bariyere çarparak geçici bir dalga üretirler. Tünellenmiş kuantaların taşıdığını varsayıyorum bilgi bu ışık hızından daha hızlı geçişten.
Bizim bakış açımıza göre tuhaf bir yere, kuantum alemine gittiler. Zamanın olmadığı tek boyutlu bir uzaya gittiler. Her şeyin aynı anda her yerde ve her zaman olduğu yere.
Kurgusal Marvel evreninin kuantum alemindeki kuantum mekanik etkilerinin 100 nanometreden daha küçük ölçeklerde önemli hale geldiği söylenmektedir. Gerçekte, bu sistemin boyutuna bağlıdır.
Yani, Dünya'da yaşamın var olmasını engelleyecek çok önemli bir kuantum mekaniksel etki var.
İnsan nöronunun filamentlerinin çapı yaklaşık olarak 10 nanometreyani 500 ila 1000 kat daha küçük. Ve kuantum etkileri de var.
Bilincin Zor Problemi
Şimdi, derin felsefi bir soruya geliyoruz: Peki ya bilinç? Nereden kaynaklanır ve nereye gider? Genellikle "Zor Problem" olarak kabul edilen bu gizem, düşüncelerimiz ile beynimizin biyolojik mekanizması arasındaki bağlantıyı çözmeye çalışır.
Bilincin, tuhaf tek boyutlu bir alemde ilerleyen dalgalar aracılığıyla beynimizin bağlantı kurma yeteneğinden kaynaklanması mümkün olabilir mi? Eğer öyleyse, bu, en basit yaşam formlarının bile bilinçle aşılanmış olabileceğini, neredeyse karanlıkta uçuşan minik farkındalık kıvılcımları gibi olabileceğini gösteriyor. Bilinç. Nereden geliyor ve nereye gidiyor?
"İnsan bilincinin nöronlar ve diğer beyin yapıları aracılığıyla tek boyutlu, zaman ve mekandan bağımsız bir aleme bağlanması nedeniyle ortaya çıktığını öne sürüyorum. geçici dalgalar aracılığıyla. Bu kuantum aleminden, bilgi dünyamıza taşınır.”
Erich Habich Traut
Eğer bu hipotez doğruysa, (elektromanyetik) dalgalar veya enerji üreten herhangi bir varlık bilince ulaşabilir veya erişebilir. midiklorya İnsan hücresinde ATP üreten mitokondrilerin ataları olan amipler bilinç kazanabilirler. CPU'lar ve GPU'lar da bir dereceye kadar bu olguya tabidir.
Işık Hızından Daha Hızlı İletişim Arayışı
Bazı parçacıkların sanki hiç yokmuş gibi bariyerlerden geçebildiği bir evreni hayal edin; uzay veya zamanla sınırlanmamış, bunun yerine gerçeklikle saklambaç oynuyorlar. Bir zamanlar bilim kurgu alanı olan bu fikir, kuantum mekaniğinin süperluminal tünelleme olarak bilinen tuhaf bir özelliğinden kaynaklanmaktadır.
Dr. Aephraim Steinberg, bir bariyerden tünelleme yapan tek bir parçacığın bu şaşırtıcı başarıyı gerçekleştirebileceğini, ancak geleneksel anlamda açık alanda bilgi taşımadığını öne sürüyor. Birinin kulağına ulaşmadan önce kaybolan bir fısıltı gibi, bir tek bir tünelleme parçacığı “havadan” iletişim kuramaz.
Ve bu büyüleyici soruları gündeme getiriyor: Ya kuantum tünelleme fenomenini iletişim için kullanabilirsek? Bir Mars görevine anlık mesajlar gönderme veya uzak yıldızlardan sinyaller alma hayallerimizi düşünün. Bu tür ışık hızından hızlı sinyaller, kozmosu keşfetme şeklimizde devrim yaratabilir.
Yıllarca bu ilgi çekici olasılığı düşündüm. Kozmik mikrodalga arka planını düşündüm - Büyük Patlama'nın kendisinden gelen hafif bir radyasyon fısıltısı. Evrenin her köşesinden yayılan bu arka plan gürültüsü, aşina olduğumuz TV bantlarındaki 300 MHz'den şaşırtıcı bir 630 GHz'e kadar uzanan bir frekans senfonisine benziyor. Yine de, evrenin enginliğine rağmen, bu serbest aralıklı süperluminal dalgaların basitçe tezahür etmediğini görüyoruz.
MİKROKOZMOS
Bu bizi başka bir aleme götürüyor—beynin mikrokozmosu! Son zamanlarda, dikkat çekici bir şeyi ortaya çıkaran bir araştırmaya rastladım: Beyinlerimizin karmaşık yapısı içerisinde geçici dalgalar var, diyor WETCOW araştırma makalesi. Bu geçici dalgalar, elektromanyetik enerjinin aktığı yerlerde gelişirler; canlı hücreler, bitkiler ve hatta bilgisayarlarımızı çalıştıran işlemciler gibi. Kozmosun tamamında ve özellikle de kozmosun içinde gelişirler.
Işıktan hızlı bu dalgalar genel göreliliğin temel prensiplerini ihlal ediyor mu? Profesör Steinberg bize "Kesinlikle hayır" diye güvence veriyor. Gerçek ışıktan hızlı sinyalleme, bu dalgaların kendi dalga boylarını aşmasını gerektirirdi, ki bu da şu anki anlayışımıza göre ulaşılamaz bir başarıdır. Bunun yerine, bu geçici dalgalar ışık hızının standart sınırları içinde kalır ve kısa bir flaştan sonra tespit edilemez hale gelirler; tıpkı karanlıkta aydınlanan ve sonra hızla sönüp tespit edilemez hale gelen bir ateş böceği gibi.
Yani, normal koşullar altında, ışık hızından daha hızlı kaybolan dalga içinde Bu çizimde (d) gösterildiği gibi normal hız dalgası:
Tünellenmiş sinyalin dalgayı yakalamak için zamanı yoktur, çünkü geçici dalgalar geçicidir. Kaybolurlar; kaybolmak "geçici" kelimesinin anlamıdır. Bu nedenle nedenselliği veya genel göreliliği ihlal etmezler.
Ancak, kaybolmadan önce heyecan verici bir şey olur: bu geçici dalgalar şaşırtıcı hızlarda seyahat edebilir. Daha önce keşfettiğimiz gibi, ışıktan daha hızlıdırlar. Beynin labirentinde, Bir milimetre küp serebral korteks şunları içerir: ortalamada, 126,823 nöron, olağanüstü hızlı sinyal işleme potansiyeli burada yatıyor. Bu minik yapılar, sınırları aşan bir iletişim biçimini kolaylaştırabilecek şekillerde etkileşime giriyor.
Ve asıl heyecan verici olan şey şu: Beyin içinde ışık hızından daha hızlı bilgi iletimi mümkün. Çünkü beyinde bu sinyalleri dalga boyu boyutlarında işleyebilecek çok sayıda yapı bulunmaktadır.
Bu dalgalara geçici alanlar da denir ve bu alanlar DNA, peptitler, proteinler ve nöronlar gibi tipik biyomoleküler bileşenlerin boyutlarıyla eşleşir.
"İnsan beyninin muazzam işlem hızı, kısmen veya tamamen ışık hızından hızlı sinyal iletimiyle açıklanabilir."
Erich Habich Traut
GEÇİCİ DALGA ÇÜRÜMESİ: Görünmezliğe Bir Yolculuk
Kozmosun büyük keşfinde, birçoğu duyularımızdan kaçan ve anlayışımızı zorlayan çeşitli fenomenlerle karşılaşırız. Bu tür anlaşılması zor varlıklardan biri de geçici dalga veya alandır.
Peki bu hassas dalgalar neden bu kadar çabuk dağılıyor? Seyahat ederken, suda hareket eden bir tekne gibi, görünmeyen bir dirençle karşılaşıyor olabilirler mi? Herhangi bir nesneyi hareketsiz bir ortamdan ittiğimizde, çabalarımıza direnen elle tutulur bir kuvvetle karşı karşıya kalırız: ortamın kendi eylemsizliği. Örneğin, durgun bir bardak suya bir damla mürekkep damlattığınızda, mürekkebin güzel, dönen bir dansla yayıldığına tanık olursunuz. Bu, mürekkebin dağılmak istemesi nedeniyle değil, suyun direnciyle karşılaşması nedeniyle gerçekleşir.
Geçici dalganın dağılması çok mu fazla? dört boyutlu uzayın eylemsizliği veya viskozitesi geçici dalganın kuantum tünelinden çıktıktan sonra karşılaştığını mı?
Birkaç dakika bekleyin ve düşünün. Bu benzetmeyi nasıl kanıtlayabilirsiniz?
Fizik araştırmalarımızda sıklıkla farklı tipte dalgalarla karşılaşırız. Örneğin, geleneksel radyo dalgaları, kaynaklarından kat edilen mesafenin karesine göre güç kaybeder. Bu, iki kat daha uzaklaştıkça sinyalin dört kat zayıfladığı anlamına gelir. Tam tersine, geçici dalgalar daha dramatik bir düşüş gösterir. Üstel olarak kaybolurlar, varlıkları geleneksel emsallerinden çok daha hızlı bir şekilde kaybolur, tıpkı beklenmedik bir rüzgar esintisiyle sönen mumlar gibi.
Aynı şekilde azalan bir dalga formu bulmayı deneyebilirsiniz.
Biraz araştırma okyanus dalgalarının üstel olarak azaldığını ortaya koyuyor:
Aslında, geçici dalgalar okyanus dalgalarına çarpıcı biçimde benzer bir şekilde bozulur. Ve bu güzel bir benzetme değil mi?
Bir fikirden diğerine nasıl atlarız? Kavramları, onları destekleyecek kesin kanıta sahip olmadan önce nasıl benimseriz? Cevap genellikle şurada yatar: düşünce deneyleri—Merakımızı uyandıran ve bizi hipotezlere götüren güçlü zihinsel yolculuklar.
Bir hipotez, eğitimli bir varsayımdır, keşfe giden yolda atılmış bir basamak taşıdır. Ancak her hipotez, aynı yolda ilerleyen başkaları tarafından incelenebileceği ve tekrarlanabileceği deneysel testlerin titizliğine dayanmalıdır.
Anlama çabamızda biraz tuhaflık yapalım. Sadece suda seyreden bir tekneyi hayal etmek yerine, büyük bir hayvanı, bir ineği hayal edin.
Evet, bir "Islak inek!" Bu görüntü ne kadar eğlenceli olsa da, zayıf bir şekilde kaybolan korteks dalgaları hakkında kritik bir noktayı göstermektedir.
WETCOW modelinin orijinal yazarları, geçici dalgalarla ilgili olarak süper ışıklılık kavramına açıkça değinmemiş olsalar da, bizim bu fikirleri araştırmamız, yerleşik bilim ile yeni keşifler arasındaki sınırları zorlayan ilgi çekici bağlantıları ortaya koyuyor.
SONUÇLAR: Bulgularımızın Kozmik Etkileri
Galinsky/Frank WETCOW modelinin çalışması için, geçici beyin dalgalarının ışıktan daha hızlı bir şekilde ortaya çıkması gerekmiyor.
Aksine, onların doğası, beynimizin bilgiyi işleme ve bilincin dokusuyla etkileşime girme hızının olağanüstü hızını görebileceğimiz bir mercek görevi görür.
Kuantum fiziği alanında, olasılıksal dalga fonksiyonunu temsil eden Ψ (Psi) sembolüyle karşılaşırız; varoluşun belirsizliklerini ileten gizemli bir matematiksel varlık. Yine de, parapsikolojide, aynı sembol bilimin henüz açıklayamadığı doğaüstü deneyimlerin ardındaki bilinmeyen faktörü sembolize eder.
Bu manzaranın ortasında, geleceği önceden görme gibi olağanüstü fenomenlerle karşı karşıyayız. Sebep ve sonuç tarafından yönetilen bir dünyada, bu görünüşte paradoksal bölümleri nasıl uzlaştırabiliriz? Geçici dalgaların varlığı, cezbedici bir olasılık sunar: ya garip doğaları içinde, sebep ve sonucun tersine çevrilmesi sadece hayali düşünceler değil, yeniden gözden geçirmemiz gereken olasılıklarsa?
Evren, keşfetmemizi bekleyen cezbedici bilmecelerle dolu ve bizi, zaman ve mekanın sınırlarının en çılgın hayallerimizin ötesine uzanabileceği dünyaları keşfetmeye çağırıyor.
Öyleyse dostlarım, hep birlikte enginliğe doğru yol alırken meraklı kalmaya devam edelim, evrenin sırlarını ortaya çıkaralım ve hepimizin içinde yatan keşif kıvılcımını besleyelim.
En iyi deneyimleri sağlamak için, cihaz bilgilerini depolamak ve/veya erişmek için tanımlama bilgileri gibi teknolojiler kullanıyoruz. Bu teknolojilere izin vermek, bu sitede gezinme davranışı veya benzersiz kimlikler gibi verileri işlememize izin verecektir. Onay vermemek veya onayı geri çekmek, belirli özellikleri ve işlevleri olumsuz etkileyebilir.
fonksiyonel
Her zaman aktif
Teknik depolama veya erişim, abone veya kullanıcı tarafından açıkça talep edilen belirli bir hizmetin kullanımını sağlamak veya yalnızca bir elektronik iletişim ağı üzerinden bir iletişim iletimini gerçekleştirmek için meşru amaç için kesinlikle gereklidir.
Tercihler
Teknik depolama veya erişim, abone veya kullanıcı tarafından talep edilmeyen saklama tercihlerinin meşru amacı için gereklidir.
İstatistikler
Yalnızca istatistiksel amaçlarla kullanılan teknik depolama veya erişim.Yalnızca anonim istatistiksel amaçlar için kullanılan teknik depolama veya erişim. Bir mahkeme celbi, İnternet Servis Sağlayıcınız tarafından gönüllü olarak uyulması veya üçüncü bir taraftan ek kayıtlar olmaksızın, bu amaç için saklanan veya alınan bilgiler genellikle sizi tanımlamak için kullanılamaz.
Pazarlama
Teknik depolama veya erişim, reklam göndermek için kullanıcı profilleri oluşturmak veya benzer pazarlama amaçları için bir web sitesinde veya birkaç web sitesinde kullanıcıyı izlemek için gereklidir.
Web sitemizi ve hizmetimizi optimize etmek için çerezler kullanıyoruz.
fonksiyonel
Her zaman aktif
Teknik depolama veya erişim, abone veya kullanıcı tarafından açıkça talep edilen belirli bir hizmetin kullanımını sağlamak veya yalnızca bir elektronik iletişim ağı üzerinden bir iletişim iletimini gerçekleştirmek için meşru amaç için kesinlikle gereklidir.
Tercihler
Teknik depolama veya erişim, abone veya kullanıcı tarafından talep edilmeyen saklama tercihlerinin meşru amacı için gereklidir.
İstatistikler
Yalnızca istatistiksel amaçlarla kullanılan teknik depolama veya erişim.Yalnızca anonim istatistiksel amaçlar için kullanılan teknik depolama veya erişim. Bir mahkeme celbi, İnternet Servis Sağlayıcınız tarafından gönüllü olarak uyulması veya üçüncü bir taraftan ek kayıtlar olmaksızın, bu amaç için saklanan veya alınan bilgiler genellikle sizi tanımlamak için kullanılamaz.
Pazarlama
Teknik depolama veya erişim, reklam göndermek için kullanıcı profilleri oluşturmak veya benzer pazarlama amaçları için bir web sitesinde veya birkaç web sitesinde kullanıcıyı izlemek için gereklidir.