UFO Over Galway Bay Chapter 4: When a UFO Sighting Became a Quantum Breakthrough

Springtime and New Ideas

Where would we be without a proper order of things, eh?
Chronology matters. There’s a rhythm to these experiences – about two weeks apart, like the quiet beat of an unseen clock somewhere behind the world. Each event linked like pearls on a string, sequenced by something larger than chance.

Log: Jan – Mar 1986 (~ 2 week sequence)

Jan 14: A lucid dream of the Challenger disaster.
Jan 28: The Challenger exploded, confirming the dream.
Feb 10-12: A vision of a cosmic torus; a glimpse into the structure of the universe.
Feb 23: A life-changing UFO sighting over Galway Bay
Mar 9: Received a “Psychic Mayday,” a distress signal from an unknown consciousness.

The story didn’t begin with the UFO. That was only the flash at the surface.

I can still recall, with a clarity that startles me, the night I dreamed of the Challenger disaster – two weeks before it happened, around the fourteenth of January. The images were unmistakable: fire, falling light, a silence that felt endless.

Then came January 28 1986. The dream stepped into daylight. The shuttle broke apart above Florida, and for a moment the whole planet seemed to hold its breath.

Two weeks later – around February 10th to 12th – I had what I can only call a vision of the cosmos: a torus of living light, immense yet intimate, turning slowly as though revealing the hidden architecture of reality itself.

Not spherical as Einstein imagined, but toroidal: a horn‑torus, a donut universe. And two weeks after that, on February 23rd, came the UFO over Galway Bay.

My dreams and visions weren’t caused by the UFO; if anything, the sighting seemed to answer them, echoing back through whatever channels link mind, matter and time. Each event felt like a note in a larger composition, a sequence strung together by something more deliberate than chance.

Life, of course, went on. I started my own business as a self-employed electrician – rewiring centuries-old cottages, fixing ovens, grounding myself in circuits I could actually hold. Yet something in me had changed. The dream, the vision, the sighting – they had opened a circuit of their own.

The Torus‑Pearlstring Proposal

In the months that followed, I rented an IBM wheelwriter to capture the flood of thoughts, diagrams, and theories that filled my head. I titled the resulting manuscript The Torus–Pearlstring Proposal.

The pages are long lost now, but the journey they began – the search to understand that hidden rhythm, the universe as a coupled system – has never really ended. A torus, not a sphere: energy circulating endlessly, like breath.

A pattern without beginning or end, feeding back through itself in perfect balance – perhaps the same pulse that linked dream, vision, and sighting, looping through consciousness like current through a circuit. For safekeeping I left a copy of the 88 page manuscript with the Ministry of Defense, department SY252, in London, Whitehall in 1987.

If I can ever retrieve it remains to be seen.


The Foghorn Emblem – Contact Project Symbol

One of the diagrams in that manuscript was peculiar: a minimalist black-and-white graphic of three geometric shapes on a white background: two opposing triangles meeting at a vertical bar.

Black geometric symbol showing two opposing triangles meeting at a central vertical bar.
Represents the Contact Project “Foghorn Emblem” - a stylized icon of communication, resonance, and SETI listening symmetry between transmitter and receiver.
The Foghorn Emblem – Contact Project Symbol

It became the Contact Project “Foghorn Emblem”: Two opposing triangles converge on a central pillar, resembling acoustic horns – perhaps one emitting, one receiving – joined by the conduit of translation. In the language of SETI, it evokes dialogue between signal and interpreter, sender and receiver, civilization and cosmos.


It evokes a cosmic foghorn, a beacon of patterned intent calling through the static of space. It represents the symmetry of sender and receiver, the moment when listening becomes dialogue.

It resembles a voltage-surpressing TVS diode and the symbol for a gate valve.


Another time it reminded me of a phonograph needle tracking the “groove” of a pulsar signal. The symbol becomes a stylus: an instrument sensitive enough to trace modulation, jitter, or non-random deviations in radio stars that could signify intention and an embedded signal within the natural rhythm.


From Point Contact to Quantum Coupling

If energy could circulate endlessly within a torus, then perhaps consciousness did the same – looping through matter, thought, and time in a self-sustaining flow. What if this rhythm could be modeled, even mimicked, in miniature?

Not the universe itself, but its echo: a transistor. Two coupled transistors, facing each other across a thin germanium slab, their currents whispering through the barrier like twin pulses of light – mirrored halves of a cosmic torus, breathing in unison.


Classical to Quantum Transition

The 1947 point‑contact transistor marked the fragile dawn of modern computing. That first functional transistor, built at Bell Labs in 1947 (Video), marked the birth of the information age – the moment electrons began to speak intelligibly through human design.

Now imagine a second one on the reverse side of the same crystal. Their bases are not separate. They share a heart of germanium, so that when one side breathes, the other side feels it. Amplification and resonance bound together. This was no longer a device of simple on/off switching but a duet.

When Transistor 1 is active, holes injected by its emitter (E₁) form a cloud of positive charge within the germanium. This cloud spreads through the shared base, influencing Transistor 2 below. The extra charge alters its bias conditions, allowing one transistor to modulate or even control the other.

This coupled behavior – one amplifier shaping another – is the essence of the design.

Then came the question that changed everything: what if that germanium block were divided by the thinnest imaginable void – a quantum gap small enough for tunneling?


The Quantum Coupled Transistor (QCT)

By splitting the base with a nanometer-scale barrier, the two halves become physically separate yet quantum-mechanically connected. The bridge between them is no longer conductive matter, but a tunneling junction – a semiconductor–gap–semiconductor structure capable of Negative Differential Resistance (NDR).

The operation of the upper transistor instantly alters the tunneling probability below, coupling the two at femtosecond speeds. In essence, an active quantum device has been embedded at the heart of the transistor pair.

In October 2025, a new realization emerged: replace germanium with graphene, separated by hexagonal boron nitride (h-BN). The QCT thus becomes a quantum membrane – a bridge of probability rather than metal, where conduction occurs through resonance, not contact.

In such a device, matter behaves less like circuitry and more like a standing wave – a field conversing with its own reflection.


Sandia’s 1998 Quantum Transistor vs 1986 Galway UFO Design

In February 1998, Sandia National Laboratories announced the Double Electron Layer Tunneling Transistor (DELTT) – a revolutionary device built from two vertically stacked transistors separated by a nanometer-thin barrier, allowing electrons to “tunnel” between layers through a quantum bridge.

Compared to Sandia’s 1998 DELTT transistor (~1 THz operation), a graphene–hBN–graphene Quantum Coupled Transistor (QCT) could theoretically reach 10–50 THz (and up to 160 THz intrinsically), with 1–5 THz achievable for cryogenic prototypes.


The Torus and the Transistor

The torus and the QCT share a deep symmetry: both circulate energy through a void, sustained by resonance and feedback.

Torus PrincipleQCT Analogue
Continuous flow through a voidElectron tunneling through a nanogap
Mutual induction of fieldsCharge and potential coupling between transistors
Inner and outer circulationEmitter–collector feedback loops
Central voidh-BN or vacuum tunneling barrier
Dynamic equilibriumNegative Differential Resistance (bistability, oscillation)

In the torus, energy never escapes; it circulates, held in balance by feedback.
In the QCT, charge does the same: injected, tunneled, reabsorbed, and re-emitted in a rhythm as fast as thought – measured not in seconds, but in femtoseconds. The circuit breathes; information moves through the void without crossing it.

And perhaps this is the deeper symmetry: that consciousness, too, circulates like current – capable of coupling across time, of reaching backward through the vacuum between moments. The Challenger dream, the torus vision, the UFO over Galway Bay – each was part of that same feedback cycle, signals in resonance across the years.


Superluminal Echo: The Steinberg-Nimtz Connection

In 1993, physicist Aephraim Steinberg and Paul Kwiat and Raymond Chiao timed photons as they tunneled through optical barriers. What they found defied classical intuition: the photons appeared to emerge from the far side faster than light could have crossed the same space.

The effect, called the Hartman Effect, implied that the photon’s wavefunction was not confined by the barrier at all – it extended through it, its phase evolving nonlocally, as if the particle were already aware of its destination.

Steinberg’s careful analysis maintained that no usable signal outran light. The pulse’s leading edge still obeyed Einstein’s limit. Yet, the phase correlations – the ghostly alignment between entry and exit -were effectively superluminal. The system’s coherence spanned the barrier faster than any classical influence could travel, whispering that information about correlations might not be bound by ordinary spacetime intervals.

Around the same time in the 1990s, physicist Günter Nimtz demonstrated that a modulated microwave signal—famously encoding Mozart’s Symphony No. 40 – appeared to tunnel through a pair of prisms faster than light could travel the same distance in air. The result did not violate relativity; rather, it showed that the evanescent field inside a barrier can transmit phase information faster than the group velocity of light.

These laboratory findings inspired the author’s proposal of the Quantum-Coupled Transistor (QCT): a graphene–hBN–graphene device designed to probe whether such evanescent coupling can be controlled, amplified, or even used to exchange information between two quantum domains.

The Quantum Coupled Transistor (QCT) is a solid-state analog of that same principle. Across its h-BN gap, electrons do not march through matter – they tunnel through probability, their wavefunctions interlocking between graphene layers in a shared evanescent field. Alice’s gate bias modulates that field; Bob’s side responds within femtoseconds – almost instantly, not through classical signals but through phase coherence.

This is Steinberg’s tunneling photon turned electronic – a field coherence that outpaces light yet preserves causality. In an active, nonlinear QCT (biased, resonant, alive,) those same correlations could, in principle, become controllable, carrying information through the void itself.

In that sense, the QCT becomes a technological metaphor for my 1986 experience:

Not prophecy, but phase coherence across the boundary of time
a superluminal echo, awareness tunneling through the same quantum void that electrons now traverse.


Toward Experimental Verification: The QCT as a Causal Foliation Test Device

In theoretical terms, the QCT embodies a tangible platform for Causal Foliated Signaling (CFS) tests: a medium where phase-linked coherence propagates faster than light yet remains globally consistent. Within such a framework, spacetime is no longer flatly Lorentzian but foliated, like in a book, by hidden simultaneity surfaces – sheets through which superluminal interactions remain orderly, non-paradoxical, and empirically testable.

Causal Foliated Signaling: like folios in a book

The Test Setup

Two QCT nodesAlice and Bob – are fabricated as mirrored graphene–hBN–graphene stacks, each with independent bias control and ultrafast detection. The gate bias on Alice’s side, V1(t), is driven by a pseudorandom terahertz modulation. Bob’s side, isolated and shielded, measures its own tunneling current, I2(t), with femtosecond precision.

The Hypothesis: Causal-Foliated Coupling (CFS)

If conventional quantum theory holds, Bob’s readings remain statistically random.
But if causal-foliated coupling exists – if the evanescent field itself carries structured information – then Bob’s signal will show faint but reproducible cross-correlations synchronized to Alice’s modulation, preceding the classical light-travel delay.

CFS introduces a hidden global time structure (“foliation”) in spacetime.
Within that structure:

  • Certain fields (like the QCT’s evanescent tunneling field) can exchange phase information superluminally.
  • These exchanges occur along the foliation, preserving causal order globally, even though they appear faster than light locally.

In simpler terms:

There is an underlying “now” in the universe – a hidden simultaneity – along which quantum coherence can propagate.

ConceptConventional
Quantum Mechanics
Causal-Foliated Coupling
What Bob seesRandom noiseFaint correlations
How Alice affects BobOnly via light-speed classical channelVia superluminal phase coupling through evanescent field
When effect appearsAfter c-delayBefore c-delay (aligned with foliation)
Causality preserved?Yes (strictly)Yes (globally ordered by hidden foliation)

Rotating the QCT apparatus relative to the cosmic microwave background (CMB) rest frame would test for anisotropy – the telltale fingerprint of a preferred cosmic foliation.
Such an outcome would imply that phase information, not energy, can traverse spacetime faster than light – that the universe permits order across the void, so long as it respects the hidden rhythm of its own higher geometry.


The Closing Symmetry

At the cosmic scale, the torus is the universe breathing through itself.
At the quantum scale, the QCT is electrons tunneling through themselves.
And across time, perhaps consciousness does the same – looping through the void in superluminal resonance, where tomorrow can whisper into yesterday, and the dream becomes the experiment.

Loops through the Void

Loops through the void – divided yet continuous, speaking across the gap.
Both embody the paradox of separation as communication – the same principle that allowed a future event to echo backward into a dream, and a vision to crystallize, decades later, as a transistor that remembers the shape of the cosmos.


This article is part of a series, all related to an unexplained sighting I had in 1986 in Ireland:

  1. UFO Over Galway Bay Chapter 1: The 1986 Salthill Encounter
  2. The Black UFO Report: Prince Charles, a Jumbo Jet, and a Night of Aerial Mysteries
  3. UFO over Galway Bay Chapter 2:  Psychic Mayday from a crashed UFO
  4. UFO over Galway Bay Chapter 3: The Irish Tuatha Dé Danann as Cosmic Visitors
  5. UFO Over Galway Bay Chapter 4: Reverse Engineering The Quantum Coupled Transistor
  6. The Quantum-Coupled Transistor (QCT): Amplifying the Void
  7. Can Information Travel Faster Than Light – Without Breaking Physics?

The Sagan Paradox, Chapter 1: The Golden Record

Introduction and Carl Sagan’s Early Work

Artwork inspired by Linda Salzman Sagan’s design for the Pioneer plaque, commissioned by NASA: click here view the original design

Carl Sagan (1934–1996) was an American astronomer, astrobiologist, and author. After NASA was founded in 1958, Sagan became a consultant for the agency. His first job involved planning the explosion of an atomic bomb on the moon, the A119 project. Highly controversial, to say the least. In 1961, at the age of 27, he published a study on the atmosphere of Venus. In 1970 he researched the conditions that could lead to the emergence of life in the cosmos on distant planets. To achieve this, he exposed frequently occurring elements to the UV radiation of a young sun and observed how amino acids, the building blocks of life, were formed from them. Carl Sagan became a full professor at the astronomy department at Cornell University. Around this time, talk shows began inviting him as a popular guest to discuss the possibility of extraterrestrial life.


“Hello, Aliens!”: Voyager Probes Get Sagan’s First Broadcast

In 1972 and 1977, Carl Sagan sent the first messages to extraterrestrials into space on the panels of the space probes Pioneer 10 & 11 and the Golden Record of Voyager 1 & 2.

The gold-plated aluminum cover (L) of the Voyager golden record (R) both protects it from micrometeorite bombardment and also provides a key to playing it and deciphering Earth’s location. NASA

It contains greetings and wishes for peace from the people of Earth in 55 languages. Earthlings extend their friendship, wish happiness and health, and express hope to one day meet their cosmic neighbors. They also express the desire for goodwill and harmony among all beings in the universe.

The greetings are in alphabetical order, from Akkadian (an extinct language for over 2000 years) to Wu Chinese. The inclusion of Akkadian in this earthly record is pretty strange. One day, these transmissions might be intercepted as they pass through space by an alien culture.

Voyager’s ‘Cosmic Map’ Of Earth’s Location Is Hopelessly Wrong

With the help of the included pulsar map, these aliens could potentially find Earth. Pulsars are stars that rhythmically emit radiation, like interstellar lighthouses. We can use them as a cosmic GPS.


Pulsar GPS: Sagan’s Star-Beacon Timecode Reveals 1971 Earth

Over long periods of time, the frequency of a pulsar slows down. Thus the pulsar map designed by scientist Frank Drake and graphic artist Linda Salzman Sagan is not only a determination of the position of our Earth in space, but the map also precisely pinpoints the position of Earth in time: 1971.

What if a prospective alien civilization has or develops the ability to time travel? What would they do with the information provided by our space probes?

Speculation about the subject makes for the greatest sci-fi story ever told. This is particularly true when we consider the included Mesopotamian-language greeting and the Annunaki creation myths—some of which have been popularized by Zecharia Sitchin and others.

Of course, intercepting our space probes is extremely unlikely. It could take millions of years, if at all. But then again, the life expectancy of the Golden Records is 5 billion years.

Aliens recovering the Golden Record

The Mysterious Signal from Proxima Centauri: How Scientists Solved a Cosmic Whodunit

The Discovery That (almost) Fooled Astronomers

In April 2019, astronomers with the Breakthrough Listen project detected something extraordinary: a narrow radio signal at 982 MHz, seemingly emanating from Proxima Centauri, our solar system’s closest stellar neighbor. Dubbed BLC1 (Breakthrough Listen Candidate 1), the signal had all the hallmarks of a technosignature—a potential transmission from an extraterrestrial civilization.

For a brief moment, the world dared to wonder: Had we finally found evidence of alien technology?

But as scientists dug deeper, the truth proved far more mundane—and far more fascinating.

The Case for BLC1 as an Alien Signal

At first glance, BLC1 was the most compelling candidate in the history of the Search for Extraterrestrial Intelligence (SETI):

Precise frequency: The signal was laser-sharp, just a few Hertz wide—something natural astrophysical phenomena can’t produce.

Non-zero drift: Its frequency drifted at 0.03 Hz/s, consistent with a transmitter on a planet like Proxima b.

Localized: It appeared only when the telescope pointed at Proxima Centauri, vanishing during off-source scans.

“The signal appears to only show up in our data when we’re looking in the direction of Proxima Centauri, which is exciting,” Ms. Sheikh said.

The Plot Twist: A Cosmic False Alarm

The Breakthrough Listen team subjected BLC1 to relentless scrutiny—and cracks began to appear.

May 2nd 2019, a possible BLC1 redetection: radio dish is pointed at Proxima b

1. The Drift That Didn’t Fit

If BLC1 came from Proxima b, its frequency drift should have shown:

Cyclical variation (rising and falling as the planet rotated).
Orbital signatures (subtle shifts tied to its 11.2-day year).

Instead, the drift was strangely linear—more like a glitching human device than an alien beacon.

2. The RFI Doppelgängers

Then, researchers found dozens of similar signals at frequencies like 712 MHz and 1062 MHz—all mathematically linked to common radio interference (RFI). These “lookalikes” had the same drift behavior but were unmistakably human-made, appearing even when the telescope wasn’t pointed at Proxima.

BLC1 wasn’t a lone anomaly—it was part of a pattern.

3. The Cadence Coincidence

The final clue? BLC1’s timing matched the telescope’s observing schedule.

On-source (30 min): Signal detectable.
Off-source (5 min): Signal too faint to see.

This created an illusion of localization—like a flickering streetlight that only seems to work when you walk by.

The Verdict: A Cosmic Mirage

After a year of analysis, the team concluded: BLC1 was interference, likely from:

Intermodulation: A “ghost” signal created when two radio waves mixed in faulty electronics.

A malfunctioning device (possibly hundreds of miles from the observatory).

Lessons for the Hunt for Alien Life

BLC1’s rise and fall taught scientists three critical lessons:

Single telescopes are vulnerable to false alarms. Future searches need global networks to cross-check signals.

The search is worth it.

For now, Proxima Centauri’s secrets remain hidden. But the hunt continues.

BLC1 wasn’t aliens—but as SETI enters a new era (with projects like the Square Kilometer Array), we’re better prepared than ever to answer humanity’s oldest question: Are we alone?

Primary Research Papers

These two papers were published concurrently and should be read together for a complete understanding of the BLC1 signal, from its detection to its ultimate classification as interference.

  1. A radio technosignature search towards Proxima Centauri resulting in a signal of interest
    • Authors: Shane Smith, Danny C. Price, Sofia Z. Sheikh, et al.
    • Journal: Nature Astronomy
    • Link to paper: https://www.nature.com/articles/s41550-021-01479-w
    • arXiv (free preprint): https://arxiv.org/abs/2111.08007
    • Abstract: This paper describes the overall search for technosignatures from Proxima Centauri and the initial detection of the BLC1 signal. It details the characteristics that made BLC1 an intriguing candidate.
  2. Analysis of the Breakthrough Listen signal of interest blc1 with a technosignature verification framework
    • Authors: Sofia Z. Sheikh, Shane Smith, Danny C. Price, et al.
    • Journal: Nature Astronomy
    • Link to paper: https://www.nature.com/articles/s41550-021-01508-8
    • arXiv (free preprint): https://arxiv.org/abs/2111.06350
    • Abstract: This is the companion paper that provides a deep dive into the analysis of BLC1. It outlines the verification framework used and presents the evidence that led to the conclusion that BLC1 was a product of human-generated radio frequency interference.

Additional Resources from Breakthrough Listen

The Breakthrough Listen initiative has also made a wealth of information about BLC1 available to the public.

  • BLC1 – Breakthrough Listen’s First “Signal of Interest”: This is the main resource page from the Berkeley SETI Research Center, providing summaries, links to the papers, data, and other supplementary materials.
  • Breakthrough Initiatives Press Release: This press release gives a good overview of the findings in an accessible format.

PULSAR SHOCKER – SCIENCE’S BIGGEST BLIND SPOT!

Why does Six-Sigma not apply to pulsar theories?

Pulsars have puzzled scientists for over 50 years, and many mysteries remain. Some wonder if these cosmic signals could actually be alien beacons rather than natural objects.

You’ve heard of neutron stars and their eerily precise lighthouse flashes of radio waves. But did you know the world’s leading experts openly admit they still don’t know how or even why pulsars pulse? Despite more than five decades of dedicated research since their discovery, fundamental aspects of the mechanisms that govern pulsars remain incompletely understood.

WHAT THEY WON’T TELL YOU

• 50 Years of “Mystery Science”
Pulsars were discovered in 1967 by Jocelyn Bell Burnell.
– The first pulsars were named “LGM” for “Little Green Men”,
because they resembled deliberate intelligent signals from aliens.
The discovery was kept a secret for two years, until a “natural” explanation could be found.
– Yet top reviews concede: “No consensus on how pulsars make coherent radio beams.”
– Even their heavyweight magnetosphere models are “pure speculation,” say the academics.

Jocelyn Bell Burnell discovered Pulsars in 1967
Jocelyn Bell Burnell discovered Pulsars in 1967

• Energy “Conversion” Conundrum
– How does a spinning neutron star turn its spin into light and X-rays?
– Experts shrug: “We don’t know where particles get accelerated… or how.”

• Interior Secrets Locked Tight
– The neutron-star Equation of State? A “well-kept secret,” even on Wikipedia.
– We can’t recreate these ultra-dense conditions on Earth – so we’re flying blind.

THE BIG QUESTION SETI WON’T ASK

If we’re this stumped by “natural” objects, could some pulsars actually be artificial beacons – designed by a super-advanced Kardashev Type III civilization? Imagine harnessing a stars energy to craft perfect, long-range lighthouses! Isn’t this a concept that the Kardashev Scale proposes?

Yet SETI protocols dismiss the idea outright:
• They focus on faint, homely radio signals – never megastructures beaming across the Milky Way.
• They’ve never seriously tested whether pulsar “noise” could be cosmic Morse code.

WHAT IF SOME PULSARS ARE ETI LIGHTHOUSES?

– Perfect timing, colossal power output, pinpoint beams… sounds like engineered tech!
– A K-III society could be “pinging” planets for millennia, and we’ve assumed it’s just physics playing tricks.

CALLING ALL STAR HUNTERS

It’s time to break the dogma. We need to:
1. Re-examine pulsar data for hidden patterns or intentional modulation.
2. Expand SETI’s search to include high-power, pulsed signals.
3. Admit our ignorance and embrace wild ideas to solve these cosmic riddles.

Until we dare to ask whether pulsars are aliens’ calling cards, we’ll remain stuck in the dark waiting for E.T. to ring a bell we refused to check. Isn’t it time someone blew the whistle on astrophysics’ biggest oversight?


Scientists on the Limits of Pulsar Knowledge

Beyond the specific unsolved problems within subfields of pulsar research, there are numerous instances where scientists make overarching statements explicitly acknowledging the incomplete state of current knowledge regarding these enigmatic objects.

Several key publications and resources directly state the limitations in our understanding of pulsars:

Beskin, Chernov, Gwinn, & Tchekhovskoy (2015):

In their review “Radio Pulsars,” these authors plainly state, “Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete.” This is a clear and high-level admission of the persistent gaps in knowledge from experts summarizing the field.

Hankins, Rankin, & Eilek (2009):

The white paper “What is the Physics of Pulsar Radio Emission?” opens with the frank assessment: “Despite much careful theoretical and observational effort, the details of how these rapidly rotating neutron stars radiate are still a mystery.” While focused on radiation, this statement implies broader difficulties in understanding the core processes.

Contopoulos, Kalapotharakos, & Kazanas (2014):

In “A new standard pulsar magnetosphere,” the authors remark, “Though pulsars were discovered almost fifty years ago, they still remain mysterious stellar objects.” This general statement encapsulates the enduring enigmatic nature of pulsars.

NASA on PSR B0943+10:

When discussing the “puzzling pulsar” PSR B0943+10, a NASA resource notes that “astronomers… aren’t sure how the particles get stripped from the surface of the star and accelerated to high energies”. The observation of its inverse radio/X-ray pulsing “reignited debate,” indicating that any prior consensus on such emission behavior was either absent or fragile and that existing models were insufficient.

“Pulsar Electrodynamics: an unsolved problem”:

The very title of a research area or a specific paper can be telling. While there is a paper on this topic, the broader identification of “Pulsar Electrodynamics” as “an unsolved problem” is a direct admission of ongoing challenges. The source itself discusses unresolved issues like “charge starvation” and “current starvation” in electrodynamic models, implying these are areas not fully settled.

The Unknown Equation of State (EoS):

A “Well-Kept Secret”
A critical unknown is the Equation of State (EoS) of matter at these supranuclear densities. The EoS describes the relationship between pressure, density, and temperature, and it dictates the macroscopic properties of the neutron star, such as its radius for a given mass and its maximum possible mass.

Neutron star equation of state, https://www.sciencedirect.com/science/article/abs/pii/S1387647310000564
Neutron star equation of state, https://www.sciencedirect.com/science/article/abs/pii/S1387647310000564

Multiple sources unequivocally state the current lack of knowledge. Wikipedia’s entry on Neutron Stars, often reflecting expert consensus, asserts: “The equation of state of neutron stars is not currently known.” The entry elaborates that this uncertainty arises because the extreme densities are impossible to replicate in terrestrial laboratories, and theoretical modeling must incorporate General Relativity as well as complex aspects of Quantum Chromodynamics (QCD), potential superconductivity, and superfluidity of nuclear matter. Understanding the EoS is described as a “major unsolved problem in fundamental physics.”

This sentiment is strongly echoed in the scientific literature. A 2017 review by Chamel et al., “The physics of the neutron star crust,” notes that while the physics of the outer crust is relatively better understood, “the structure of the matter in neutron star cores and in particular its equation of state remain the well-kept secret of neutron stars”. The inability to definitively determine the EoS means that fundamental parameters, such as the precise upper mass limit for neutron stars before they collapse into black holes (the Tolman-Oppenheimer-Volkoff limit), remain uncertain, with theoretical estimates varying.

SIX-SIGMA:

Scientific Theories: When a theory encounters contradictory evidence or fails to explain a new observation, it is not a “defect” in the scientific process. Instead, it signals that the theory may be incomplete, incorrect under certain conditions, or in need of refinement. Such discrepancies are essential for scientific progress, often leading to new hypotheses or even paradigm shifts. This mindset may be exactly what’s needed to advance our understanding of pulsars.

A Visual Approach to Pulsar SETI: Searching for Meaningful Data in Previously Dismissed Signals

Pulsars were too quickly dismissed from SETI. Why? Because there are too many of them? This is a visual representation of one way of searching for meaningful data encoded within their signals:

This image imagines the pulsar’s repeating signal as the groove of a cosmic phonograph. Each pulse – each tick in the data stream – becomes a ridge or indentation along a spiral carved in spacetime. To read it, one needs not only a telescope but a stylus: an instrument sensitive enough to trace modulation, jitter, or non-random deviations that could signify intention.

The superimposed waveforms suggest multiple decoding hypotheses – alternative ways of “tracking the groove.”

One model aligns to the expected astrophysical spin; another searches for phase drift, harmonic layering, or sidereal interference – anything that could betray an embedded signal within the natural rhythm. Like playing a damaged record, each pass with the analytic “needle” may reveal a different voice beneath the static.

In this metaphor, SETI is the art of deep listening – treating pulsars not only as cosmic metronomes but as possible information carriers, natural beacons repurposed or engineered by intelligence.

If such a modulation existed, it would be written not in human speech but in timing, symmetry, and harmonic resonance – a music of mathematics.

To decrypt a pulsar is therefore to attune consciousness itself:
to convert mechanical detection into aesthetic recognition,
to bridge astronomy and meaning.


References:

Are Radio Pulsars Extraterrestrial Communication Beacons?
https://www.researchgate.net/publication/264785777_Are_Radio_Pulsars_Extraterrestrial_Communication_Beacons

Pulsar Positioning System: A quest for evidence of extraterrestrial engineering
https://arxiv.org/abs/1704.03316

A 4–8 GHz Galactic Center Search for Periodic Technosignatures
https://iopscience.iop.org/article/10.3847/1538-3881/acccf0

‘Unlike anything we have seen before’: Astronomers discover mysterious object firing strange signals at Earth every 44 minutes, May 28, 2025
https://www.livescience.com/space/unlike-anything-we-have-seen-before-astronomers-discover-mysterious-object-firing-strange-signals-at-earth-every-44-minutes

Chameleon pulsar takes astronomers by surprise, 19 February 2013
https://observatoiredeparis.psl.eu/chameleon-pulsar-takes-astronomers-by-surprise.html

Black hole blazar changes direction and now points its jet towards Earth
An inexplicable change of course
https://ras.ac.uk/news-and-press/research-highlights/galaxy-changes-classification-jet-changes-direction

(FRINGE) Decoding the Message of the Pulsars: Intelligent Communication from the Galaxy
https://www.amazon.com/Decoding-Message-Pulsars-Intelligent-Communication/dp/1591430623

Beskin, V. S. (2018). Radio pulsars. Physics-Uspekhi, 61(7), 655–686.

Hankins, T. H., Rankin, J. M., & Eilek, J. A. (2009). What is the Physics of Pulsar Radio Emission? Astro2010: The Astronomy and Astrophysics Decadal Survey, Science White Papers, no. 120.

Contopoulos, I., Kalapotharakos, C., & Kazanas, D. (2014). A new standard pulsar magnetosphere. Monthly Notices of the Royal Astronomical Society, 443(1), L45–L49.

NASA. (2013, October 23). NASA’s Chandra and XMM-Newton Find Puzzling Pulsar. NASA Missions.

Petri, J. (2019). Pulsar electrodynamics: an unsolved problem. Journal of Plasma Physics, 85(5), 15850501.

Chamel, N., Fantina, A. F., & Zdunik, J. L. (2017). The physics of the neutron star crust. In The Physics and Astrophysics of Neutron Stars (pp. 57-95). Springer, Cham.

Posing the Cosmic Question: What Occurs Within a Black Hole?

AI’s Provocative Claim: “Humans Are Ignorant”

Consider the following intriguing questions: What happens to the very dimensions of spacetime inside a black hole? Different responses from an AI highlight both our current understanding—and our limitations.

Pablo Carlos Budassi, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

First Perspective: Continuity of Four-Dimensional Spacetime

One reply asserts that objects falling into a black hole do not lose any dimensions. In this view, spacetime retains its four-dimensional structure (three dimensions of space plus one of time) both outside and inside the event horizon. The singularity—where density becomes infinite—is not actually a state reduced to 1D. Instead, it represents a point where general relativity breaks down after entering a black hole. Although quantum gravity theories such as loop quantum gravity propose alternatives (for instance, “bounces” that avoid the singular state), none of these ideas involve a reduction in the number of dimensions.

Second Perspective: Dimensional Breakdown at the Singularity

A subsequent response from the same AI emphasizes a different perspective. In Einstein’s theory, the singularity is defined as a point of infinite density and extreme spacetime curvature. It is where the equations of general relativity “break down.” In this classical picture, spacetime loses its well-defined four-dimensional structure (3 spatial dimensions plus 1 time dimension). For non-rotating, or Schwarzschild, black holes, the singularity is described as a 0D point. In contrast, for rotating (Kerr) black holes, the singularity takes on the form of a 1D ring.

Urbane Legend, CC BY-SA 3.0 http://creativecommons.org/licenses/by-sa/3.0/, via Wikimedia Commons

Reconciling the Contradiction: Artifacts of Mathematical Models

The AI explains these seemingly contradictory responses with a reminder that, in general relativity, the singularity is not a physical object. Instead, it is a mathematical artifact. The labels “0D” and “1D” serve as geometric shorthand—conceptual placeholders that indicate where our classical theories fail. In effect, these designations (“here be dragons”) acknowledge the limits of our current understanding of extreme gravitational environments, especially those involving black holes.


Embracing the Unknown in Theoretical Physics

In summary, one perspective maintains that spacetime remains four-dimensional throughout the journey into a black hole. This is true even as general relativity breaks down at the singularity. Another viewpoint suggests that, near the singularity, the familiar four-dimensional framework is lost. It collapses into a 0D point or a 1D ring depending on the black hole’s rotation. Ultimately, both answers are reminders of the limits of our current theories and the continuing challenge of unifying general relativity with quantum mechanics.


Stephen Hawking’s Insight: Illuminating Our Limitations

An illustrative image from Stephen Hawking’s Reith Lecture on 26 January 2016 further underscores this point. Hawking’s insights remind us that while our current models of black holes capture many aspects of reality, they also expose profound gaps in our knowledge.

Until a successful theory of quantum gravity is developed, these descriptions remain approximations. They reflect human ignorance as much as our understanding.

Image: from Stephen Hawking Reith lecture, 26 January 2016